
Verification & Validation Of Neural

Networks For Aerospace Systems

COLLABORATION BETWEEN

Dryden Flight Research Center

AND

NASA Ames Research Center

Dated:
Contributors:

June 12, 2002
Dale Mackall, DFRC
Stacy Nelson, NCC
Johann Schumman, RIACS

VERIFICA TION AND VALIDATION OF NEURAL NETWORKS FOR AEROSPACE APPLICATIONS Page 2

Special thanks to the individuals listed below (in alphabetical order by first name) for their time in
answering questions and provicfing project/technical expertise:

Brian Taylor, ISR
Chuck Jorgensen, ARC
Dick Larson, DFRC
Don Solloway, ARC
Greg Limes, ARC
John Burken, DFRC
Karen Gundy-Burlet, ARC
Kurt Guenther, DFRC
Mark Boyd, ARC
Pamela Parker, NCC
Peggy Williams, DFRC
Timothy Smith, Boeing
Van Casdorph, ISR

ARC -Ames Research Center
DFRC - Dryden Flight Research Center
ISR - Institute for Software Research, Inc.
NCC - Nelson Consulting Company
RIACS - Research Institute for Advanced Computer Science

June 12, 2002

VERIFICATION AND VALIDATION Of: NEURAL NETWORKS FOR AEROSPA CE APPLICATIONS Page 3

TABLE OF CONTENTS

1. NOMENCLATURE .. 5
2. EXECUTIVE SUMMARY .. 6

2.1.1. OVERVIEW OF ADAPTIVE SYSTEMS ... 6
2.1.2. V&V PROCESSES/METHODS .. 6

3. OVERVIEW OF ADAPTIVE SYSTEMS ... 10
3.1. Overview of Neural Networks .. 10
3.2. Pre-Trained Neural Networks (PTNN) ... 12
3.3. Online Learning Neural Networks (OLNN) .. 14

4. V&V PROCESSES/METHODS .. 16
4.1. Overview of NASA V&V Standards ... 16

4.1.1. Life Cycle .. 17
4.2. Verification of Adaptive Systems ... 18

4.2.1. Contract Verification .. 18
4.2.2. Process Verification .. 19
4.2.3. Requirements Verification ... 19
4.2.4. Design Verification .. 22
4.2.5. Code Verification ... 31
4.2.6. Integration Verification .. 31
4.2.7. Documentation Verification ... 32

4.3. Validation of Neural Networks ... 33
4.3.1. Items Subject to Validation ... 33
4.3.2. Validation Environment ... 33
4.3.3. Testing .. 34

4.4. V &V Metrics ... 36
4.5. Independent Verification and Validation (IV&V) .. 37

5. APPENDIX A: ACRONYMS .. 38
6. APPENDIX B: GLOSSARY ... 39
7. APPENDIX C: FOR MORE INFORMATION ... 42
8. APPENDIX D: SELF ORGANIZING MAPS .. 43
9. APPENDIX E: SAMPLE REQUIREMENTS FOR THE PRE-TRAINED NEURAL NETWORK: 46
10. APPENDIX F: HESSIAN MATRIX .. 50
11. APPENDIX F: STABILITY COEFFICIENTS ... 51
12. APPENDIX G: INTELLIGENT FLIGHT CONTROL SYSTEM (IFCS) .. 52
13. APPENDIX H: V&V ISSUES for NEURAL NETWORKS .. 55

13.1. Introduction .. 55
13.2. Notation .. 56
13.3. Data Ranges .. 59
13.4. Roundoff Errors ... 59

13.4.1. Accuracy of Operators .. 60
13.5. Scaling ... 61

13.5.1. Badly Scaled Problems ... 61
13.5.2. Influence of Scaling ... 61
13.5.3. How to Scale ... 64

13.6. Sensitivity Analysis .. 65
13.7. Condition Numbers ... 67
13.8. Analysis of the Training Algorithm ... 71

13.8.1. Progress of the Training ... 72
13.8.2. Stopping (the Training) ... 74

14. APPENDIX I: BASICS .. 78
15. APPENDIX J: QUADRATIC FUNCTIONS AND QUADRATIC FORMS 80
16. APPENDIX K: EIGENVECTORS AND EIGENVALUES .. 82

June 1_ 2002

VERIFICATION AND VALIDATION 0 _-NEURAL NETWORKS FOR AEROSPACE A PPLICA TIONS Page 4

17. REFERENCES ... 84

June 12, 2002

VERIFICATION AND VALIDA/'ION OF NEURAL NETWORKS FOR AEROSPACE APPLICATIONS Page 5

1.NOMENCLATURE

The following nomenclature is L_sedthroughout this document:

• Pre Trained Neural Net (PTNN) refers to a supervised learning model that "learns" the
relationship between in;)uts and outputs through training by a "teacher". Once trained, the PTNN
does not adapt or chan,_e during operation.

• Online Learning Neural Networks (OLNN) refers to neural nets that learn by adapting to
regularities in data according to rules implicit in the design, but without a teacher; therefore,
OLNN adapt or change during operation.

• Supervised/Unsupervised refers to the training method for the neural network where supervised
neural networks require a teacher and unsupervised neural networks learn independently. Neural
networks can be either supervised or unsupervised.

• Static/Dynamic refers t¢ learning method of the neural network where static means the NN does
not learn during operation and dynamic means the NN learns in real time during operation.

June 12, 2002

VERIFICATION AND VALIDATION Of NEURAL NETWORKS FOR AEROSPACE APPLICATIONS Page 6

2. EXECUTIVE SUMMARY
The Dryden Flight Research Center V&V working group and NASA Ames Research Center Automated
Software Engineering (ASE) group collaborated to prepare this report. The purpose is to describe V&V
processes and methods for certification of neural networks for aerospace applications, particularly
adaptive flight control systems iike Intelligent Flight Control Systems (IFCS) that use neural networks.

This report is divided into the following two sections:

• Overview of Adaptive Systems

• V&V Processes/Methods

2.1.1. OVERVIEW OF ADAPTIVE SYSTEMS

Adaptive systems refer to systems that can assess a situation and make changes accordingly. The
Intelligent Flight Control Systerr (FCS) is an excellent example of an adaptive system because neural net
software in the flight control system learns about the changes inthe aerodynamics from sensors on or
connected to aircraft surfaces (flaps, elevators, rudders, ailerons, et at) and provides vital updates to FCS
to compensate in the case of a failure (stuck rudder, broken elevator, missing surface etc.)

The IFCS will use the neural ne-works listed below and explained in Section 3:

• Pre-trained Neural Net !PTNN)

• Online Learning Neural Network (OLNN)

This document concentrates on the V&V of PTNN and contains information known at time of publication
about one type of OLNN called Dynamic Cell Structure (DCS). It does not provide a comprehensive
discussion of V&V for OLNN. Research is underway at NASA to discover advanced V&V techniques to
address the special and complex issues surrounding verification of OLNN.

2.1.2. V&V PROCESSES/METHODS
Software V&V is defined as the orocess of ensuring that software being developed or changed will satisfy
functional and other requirements (verification) and each step in the process of building the software
yields the right products (validation). In other words:

• Verification - Build the Product Right

• Validation - Build the Right Product

This section is divided into four parts:

• Verification

• Validation

• Metrics

• Independent Verificatior_ and Validation (IV&V)

Verification

Verification guidelines for Adaptive Systems are based on March 1998 IEEE/IEA 12207.0, paragraph 6.4.
Types of verification to be condt_cted include:

• Contract verification - make sure that vendors of adaptive systems and independent contractors
with expertise in adaptive systems follow standard cor_tract guidelines

June 12, 2002

VERIFICATION AND VALIDATION OF NEURAL NETWORKS FOR AEROSPA CE APPLICATIONS Page 7

Process verification - e_lsure that the project team includes neural net experts and V&V engineers
with experience in testing safety critical systems including neural nets.

Requirements verification

o Verify the description of the learning algorithm

o Verify that addi:ional criteria for specifying the performance of the neural network exists

o Verify accuracy of stopping criteria

o Verify weights are properly adjusted for PTNN

o Verifythe topology of neural network

o Verify the accuracy of the training set requirements

o Verify the description of the desired output data, a range of those parameters, and the
level of errors that is acceptable for adequate system performance

o Verify correctness of each error range for the stability coefficients

o Verify the appropriateness and use of stability proofs for the adapting algorithm

o For subsequen: implementations of a PTNN, verify that once trained, the weights are not
altered as they are loaded into the system

Design verification

• First, ensure that the NN is trained on more and more complex training sets until it
achieves a minimum error with a minimum number of weights. Then, make sure the
weights are fixed and remain static for subsequent evaluation and implementation using
either test or production data. Then, check that test data is used to verify the accuracy of
the NN. Finally, compare that the output of the neural networks to the desired values to
determine the minimum and maximum, as well as the average error.

• Verify acceptabe output ranges

• Perform sensitivity analyses

• Verify appropriate use of scaling

• Examine the conditioning of the problem

• Check stopping criteria

• Test training tirce

• Checkthe progress of training

• Verifythe trainirg set

• Verify that, when designing a NN, the learning characteristics are well understood

• Verify that the learning algorithm was properly designed

• Verify that the a_)propriate NN topology was designed

Additional design information can be found a book titled, Neural and Adaptive Systems from
Fundamentals through Simulations. 1

Code verification - Code verification pertains to the NN software rather than the training of the
NN. Traditional white box testing may be used.

Integration verification
o Verify that PID (!3arameter identification) data is in the appropriate form to match the

PTNN data

o Verify that the P]NN recalls proper aircraft model data and feeds it to DCS

June 12, 2002

VERIFICA TION AND VALIDATION OF NEURAL NETWORKS FOR AEROSPACE APPLICATIONS Page 8

o Verify that DCS receives PTNN and PID data in the proper form

Note: See Appendix E for more information about PID and other software that is
integrated with the NN.

Documentation verification - For the most part, descriptions of adaptive systems should be
included in standard project documentation. Any special documentation about adaptive systems
should be verified for technical accuracy by a peer review, then, catalogued and safeguarded
following standard docL-mentation configuration management procedures.

Validation

Validation guidelines for Adaptive Systems are based on March 1998 IEEE/IEA 12207.0, paragraph 6.5.
The validation process is documented in the validation plan and consists of the following:

• Items subject to validation -both PTNN and OLNN neural networks will be subject to validation to
ensure they perform within acceptable ranges.

• Validation environment- Low, medium and high-fidelity testbeds will be necessary to properly test
adaptive systems. Different versions of PTNN and DCS software are available for testing purposes.

• Testing to validate that the software satisfies its intended use.

• Perform Unit Testing

• Test the frequency response and phase and gain margins to ensure proper mil specs are met
for stability

• Perform failure morJes and effects (FMEA) testing

• Perform sensitivity analysis to ensure proper stability and flying qualities

• Test timing to ensure that, under the worst case scenario, the system has adequate
performance or degrades gracefully when saturated

• Test system utilization (memory available, data through put and other system specific
resources)

• Check time to adapt for DCS and other OLNN. Note: PTNN do not adapt

• Conduct a piloted evaluation

Additional validation activities for IFCS PTNN include:

• Checking interpolation c,f wind tunnel data for PTNN to check for gaps during training

• For PTNN, check points between knot data to make sure the curve is consistent (no unexpected
jumps).

• List stability coefficients output from PTNN and compare against valid ranges

• Check that PTNN data sent to ground via telemetry is accurate to validate that the PTNN is

working in the flight environment.

• Check that PID data is in the appropriate form (FIFO or average) to match PTNN data

• Compare training values with actual output values

Metrics

Neural Network Metrics include:

• Learning time

• Recall response time

June 12, 2002

VERIFICATION AND VA LIDA TION CF NEURAL NETWORKS FOR AEROSPACE A PPLICA TIONS Page 9

• Accuracy

• Repeatability

• Robustness in the face of failures

Independent Verification and Validation (IV&V)

An overview of Independent Verification and Validation (IV&V) requirements is included due to the
possible impact on budgets for V&V of adaptive systems

June 12, 2002

VERIFICATION AND VALIDATION OF NEURAL NETWORKS FOR AEROSPA CE A PPLICA TIONS Page 10

3.OVERVIEW OF ADAPTIVE SYSTEMS
Adaptive systems refer to systems that learn about their environment and adjust accordingly. They can
assess a situation, like a stuck rudder on an aircraft, and compensate for it. The Intelligent Flight Control
System (IFCS) is an excellent example of this type of adaptive system because neural network software
in the flight control system automatically assesses the aircraft state (rates, acceleration, air data and
surface positions, et al) and provides flight information (stability coefficients) to compensate in the case of
a failure (stuck rudder, broken elevator, missing surface etc.). Appendix G contains more information
about IFCS.

Several types of neural networks (also called neural nets) were used in the IFCS. This section contains
an overview of neural networks .',NN)and a description of specific types of NN used in IFCS.

3.1. Overview of Neural Networks
A Neural Network (NN) is a collection of mathematical models that process information in a way that
loosely mimics the human brain They are used in modems, image processing/recognition systems,
speech recognition systems, and adaptive aircraft flight control systems.

Neural networks differ from conventional computers in that they do not execute a set of predefined
instructions. ANN is composed of a large number of highly interconnected processing elements called
neurons that work in parallel to solve specific problems.

Typical Neuron
The human brain is composed cf approximately ten thousand million highly connected units called
neurons. These neurons are made up of four principal components consisting of the dendrites, soma,

axon and synapses.

/

4 P_c_sof

ic_l Nerve Cell

Dendrites : Accept inputs

J
f

xx

Soma : Process the inputs

Axon: Turn the processed inputs

into outputs

Sgnapses: The electrochemical
contact between neurons

Figure 1: Typical Biological Neuron

The dendrites are the input conduits which receive input stimuli through the synapses of other neurons in
the form of voltage spikes. They deliver electro-chemical excitation via hair-like nerve fibers to cell body,
or soma, for processing. The soma processes the incoming signals in the form of sum and threshold
functions. The processed values are output and distributed to other neurons through the axon and the

synapses.

June 12, 2002

VERIFICA "lION AND VALIDATION 0_: NEURAL NETWORKS FOR AEROSPACE APPLICATIONS Page 11

The axons connect to the dencrites of other neurons via synapses. When a voltage spike reaches a
synapse, chemicals called neurotransmitters are released. These travel across the synapse gap and
activate gates on the dendrites which produce a voltage pulse. Each dendrite may be connected to many
synapses, some of which are excitatory and some inhibitory. Each neuron is connected to approximately
ten thousand others that are grouped together into functional assemblies to perform specific tasks.

Learning occurs in the brain when the effective coupling between one cell and another is modified to
reinforce good connections or remove bad ones. The axon links from the receptive neurons are affected
by their distance from the activated neurons, causing cells which are physically close to the propagating
cell, to have the strongest links. After a certain distance those links become inhibitory causing clustering
of neurons into groups which respond to similar stimuli.

The following diagram compares a biological neuron to an artificial neuron like the feedforward perceptron
used in the PTNN.

,t-.\

x j: _ u_ __

._win summation nonlinearity
Xn ._ u_ = _j wljx_ Yi = f(ui)

(b)

Yi

Figure 2: Biological Neuron Compared to Artificial Neuron 2

As you see the biological (a) and artificial neurons (b) are very similar. Both receive input from a dendrite,
process that input in the soma and axon and issue output via synapses. The input from the artificial
dendrite is in the form x_...x,.. T_e artificial soma processes the input, by multiplying it by weights
(w_1...win),then summing the products. The result of this summation is further processed via the artificial
axon through a nonlinear function, in this case a tanh function (nonlinear functions are explained in
Section 3.2). The output from the artificial synapse is y,-

Learning is accomplished in various ways for different types of neural networks. The IFCS contains two
types of neural nets:

• Pre-trained Neural Net (PTNN)

• Online Learning Neural Net (OLNN)

In the PTNN, learning occurs by discovering nodes and adjusting synaptic weights; therefore it can be
t 3conf gured for a spec f c app cat on by learmng from a set of trammg da a.

June 12, 2002

VERIFICATION AND VALIDATION OF NEURAL NETWORKS FOR AEROSPACE APPLICATIONS Page 12

There are various types of OLNN including the Dynamic Cell Structure (DCS) neural net used in early
generations of IFCS. Learning c)ccurs in the DCS in much the same way as the human brain. Behavior
or "edges" are reinforced or eliminated depending upon use and nodes are identified that best match the

input data.

The following sections describe the PTNN and the DCS OLNN.

3.2. Pre-Trained Neural Networks (PTNN)
The Pre Trained Neural Networks (PTNN) used in the Intelligent Flight Control System (IFCS) Is a
supervised learning model meaning it "learns" the relationship between inputs and outputs through
training by a "teacher".

The process is referred to as "supervised" because an external "teacher" must specify the correct output
for each and every input pattern. In the case of IFCS, the teacher is a model of the physical aircraft
surfaces (flaps, rudders...). The PTNN learns through a process of determining the number of nodes

(neurons)4and adaptation of the weights (part of a mathematical computation shown in the following
diagram). When learning is complete, the weights are fixed so the PTNN can remember what it learned.

f(InputlWeightll+ Input,zWeight_)= Output1

Weightl_ = Output1

'npUtlw °" Pre-Trained Neural Net (PTNN)

,, \
Weight21

input2 / _,('lo,,_) = Output 2

Weight22

Figure 3: Overview of PTNN

Figure 1 shows how inputs to the neuron are weighted. It also shows the summation of the weighted
inputs and one type of activation function called a hyperbolic tangent (tanh) used to compute the output.
As shown below, the tanh function is a centered version of the sigmoid function. A sigmoid function is a
continuous, bounded, monotonic function of its input x. It saturates at 0 for large negative inputs and at 1
for large positive inputs. Near zero, it is approximately linear.

June 12, 2002

VERIFICATION AND VALIDA TION CF NEURAL NETWORKS FOR AEROSPACE APPLICATIONS Page 13

Sigmoid Function Tanh Function

Other activation functions include the step function, ramp function and Gaussian function shown below 5

Step Function

Ramp Function Gaussian function

Since the weights are fixed, the pre-trained neural network receives input data and calculates the output
within a given error, as defined by the weight values. This makes the PTNN easier to verify and validate
than an unsupervised NN beca,Jse the expected results (output) can be computed within an acceptable
error margin.

Note: Unsupervised means the NN learns by adapting to regularities in data according to rules implicit in
its design, but without a teacher. Weights are not fixed in an unsupervised NN; therefore, they are more
difficult to verify.

The IFCS PTNN has the following features:

• Multi-layer feedforward perceptrons (The term perceptron refers to a feedforward network of
nodes with response like those shown in Figure 2 above. Feedforward means there are no
connection loops that would allow output to feed back to their inputs and change the output at a
later time. In other words, the network implements a static mapping that depends only on present
inputs and is independent of previous system states.)

• Tanh neural activation f_Jnction.

June 12, 2002

VERIFICATION AND VALIDATION OF NEURAL NETWORKS FOR AEROSPACE APPLICATIONS Page 14

3.3. Online Learning Neural Networks (OLNN)
Online Learning Neural Networks adapt or change during operation. This process guide contains
information known at publication regarding one type of OLNN, the Dynamic Dell Structure (DCS). It does

not provide a comprehensive discussion of V&V for DCS or OLNN. Research is underway at NASA to
discover advanced V&V techniques to address the special and complex issues surrounding verification of

unsupervised, dynamic neural networks.

DCS is a Self Organizing Map (SOM). An overview of the DCS SOM is shown below and Appendix D

contains an in depth technical discussion. 6

Dynamic Cell Structure (DCS)

3resentation of each region

closest representation or output

For each input find the closest representation
and it becomes the output

Weights are the p:)sitions of the outputs

Pruning removes edges when region no longer exists

Figure 4: Overview of DCS (input values and weights determine the position (value) of the outputs)

Nodes or neurons in DCS NN are points that represent regions of the surface being evaluated by the net.

When the network receives input, it finds the node that is closest to the input and outputs that node.

Therefore, the weights of a DCS NN used to map the output.

As it learns, regions in DCS change requiring modification to the edges of the regions called pruning.

Pruning mechanisms are of particular interest for V&V because it is critical to evaluate points near the

edges to ensure the proper region representative is selected for each point.

The IFCS DCS SOM has the following features:

• Uses block learning - re,.;eives several data samples at the same time and does a number of

learning iterations on that data. An external module called SDB builds a block of data from the

incoming stream

• Was designed with no global data and does not use any dynamic allocation calls

June 12, 2002

VERIFICATION AND VALIDATION C_ NEURAL NETWORKS FOR AEROSPACE APPLICATIONS Page 15

Uses Hebbian learning (rather than competitive learning) - unsupervised neural networks learn
based on the experience collected through the previous training patterns. Hebbian learning is
one type of unsupervised learning. A simple version of Hebbian learning is that when unit/and
unit j are simultaneously excited, the strength of the connection between them increases in
proportion to the product of their activations. _ This technique makes it possible to decay edges
so that as the NN learns edges are either reinforced or eliminated.

Another type of unsupervised learning is called competitive learning. If a new pattern is
determined to belong to a previously recognized cluster, then the inclusion of the new pattern into
that cluster will affect the representation of the cluster. This will in turn change the weights
characterizing the classification network, if the new pattern is determined to belong to none of
the previously recognized clusters, then, the NN will be adjusted to accommodate the new class.

Uses a Kohonen self organizing map to select the best matching node. The basic idea of a SOM
is to incorporate into the learning process some degree of sensitivity with respect to the
neighborhood or history,. This provides a way to avoid totally unlearned neurons and helps
enhance certain topological property which should be preserved in the feature mapping.

The question is how to train a network so the ordered relationship can be preserved. Kohonen
allows the output nodes to interact laterally leading to the self-organizing feature.

First, a winning neuron is selected as the one with the shortest Euclidean distance between its
weight vector and the input vector where wi denotes the weight vector corresponding to the ith
output neuron.

IIx- will
Second, let/*denote the index of the winner and let/*denote a set of indices corresponding to a
defined neighborhood of winner L Then the weights associated with the winner and its
neighboring neurons are updated by

Awj = n(w-wj)

For all the indices j is a member of I and n is a small positive learning rate. The amount of
updating may be weighted according to a pre-assigned "neighborhood function". The
convergence of the map depends upon the proper choice of n. One plausible choice is that n =
lit. The size of the neighborhood should decrease gradually. The weight update should be
immediately succeeded by the normalization of wi.8

Validation activities for DCS include:

o Validate one version of DCS against other versions and check for same or better results

o View graphs st-owing DCS output to visually inspect the NN output

o Use traditional software techniques to perform white box testing for each module of DCS

o Look at the entire boundary rather than just the corners and midpoints

June 12, 2002

VERIFICATION AND VALIDATION CF NEURAL NETWORKS FOR AEROSPACE APPLICATIONS Page 16

4. V&V PROCESSES/METHODS
Software verification and validation (V&V) is defined as the process of ensuring that software being
developed or changed will satisfy functional and other requirements (verification) and each step in the
process of building the software yields the right products (validation). In other words:

• Verification - Build the Product Right

• Validation - Build the Right Product

Current V&V practices for adaptive systems follow NASA V&V standards for traditional software with
special consideration at each Life Cycle stage for the neural net software. Therefore, this section is
divided into the following subsections:

• Overview of applicable NASA standards for V&V of airborne software

• Enhancements to verification guidelines (based on March 1998 IEEE/IEA 12207.0, paragraphs
6.4 and 6.5) for V&V o_Adaptive Systems

• Augmentation of validation guidelines based (based on March 1998 IEEE/IEA 12207.0,
paragraph 6.5) for Adaotive Systems

• V&V Metrics

• Overview of Independent Verification and Validation (IV&V) requirements and the possible impact
on budgets for V&V of adaptive systems

4.1. Overview of NASA V&V Standards
Applicable NASA V&V Standards include the two documents listed below:

• NASA Guidebook for Safety Critical Software, NASA-GB-1740.13-96

• Trial-Use Standard for information Technology Software Life Cycle Processes - Software
Development, J-STD-016-1995

• Dryden center policy, I] C P-S-007

• IEEE Standard for Software Test Documentation, IEEE Std 829-1998 (Revision of IEEE Std 829-

1983)

• NASA Procedures and Guidelines (NPG) 2820.DRAFT, NASA Software Guidelines and
Requirements 9

• NASA Procedures and Guidelines (NPG) 8730.DRAFT 2, Software Independent Verification and
Validation (IV&V) Management 9

NPG 2820.DRAFT references tile following IEEE/EIA Standards 1°developed in accordance with ANSI:

• 12207.0 - Standard for Information technology- Software Life Cycle Processes (March,
1998) 12207.1 - Standard for Information technology - Software Life Cycle Data (April, 1998)

• 12207.2 - Standard for _nformation technology - Software Implementation Considerations (April,
1998

The IEEE documents reference the ISO and IEC standards published as ISO/IEC 12207 in 1995.

In addition to the NASA standarcls, DO-178B, "Software Considerations in Airborne Systems and
Equipment Certification" contains guidance for determining that software aspects of airborne systems and
equipment comply with airworthiness certification requirements. Written in 1980 by the Radio Technical
Commission for Aeronautics (now RTCA, an association of aeronautical organizations of the United
States from both government ard industry), it was revised in 1985 and again in 1992. During the 1992
revision, it was compared with international standards: ISO 9000-3 (1991), "Guidelines for the Application

June 12, 2002

VERIFICATION AND VALIDATION OF NEURAL NETWORKS FOR AEROSPACE APPLICATIONS Page 17

of ISO 9001 to the Development, Supply and Maintenance of Software" and IEC 65A (Secretariat) 122
(Draft- 11-1991), "Software for Computers in the Application of Industrial Safety-Related Systems" and
considered to generally satisfy tqe intent of those international standards.

NASA V&V Standards Acronyms:

ANSI

EIA

IEC

IEEE

ISO

NPG

-American National Standards Institute

- Electronic Industries Association

- International Electro-technical Commission

- Institute of Electrical aqd Electronics Engineers

- International Organization for Standardization

- NASA Procedures and Guidelines

4.1.1. Life Cycle
The following diagram shows the relationship between V&V and the Life Cycle Phases described in the
standards .9

Software

Requirements Analysis

Software

Architectural Design

Software

Detailed Design

System

Qualification Testing

System

Integration

Software

Qualification Testing

Software Integration

KEY

Software Phase

Unit Testing
Product

Verify -]_
%

Software Coding Validate ---- • "_

Figure 5: V&V for Life Cycle Phases

The following list contains an o,_erview of additions to each Life Cycle phase for V&V of adaptive systems:

June 12, 2002

VERIFICATION AND VALIDATION OF NEURAL NETWORKS FOR AEROSPACE A PPLICA TIONS Page 18

• Systems requirements must be enhanced to include NN specification

• System Architectural Design must contain NN architecture including integration with other
systems

• Software Requirements Analysis must include NN software requirements including type of NN,
learning algorithm, a description of the inputs and outputs, acceptable errors and training set(s)
for pre-trained NN

• Software Architectural Design should contain NN software architecture design including type of
NN (feedforward, Self Organizing Map, etc) and the learning algorithm (Least Means Squared
(LMS), Levenberg-Marquardt, Newton's method etc)

• Software detailed design must include a description of precise code constructs required to
implement the NN

• Software coding must contain NN code

• Unit testing must incluce both black and white box testing for modularized NN code

• Software integration should verify that the NN interfaces with other software including proper
inputs and outputs for t_e NN

• Software Qualification -:.esting should ensure that the requirements are sufficiently detailed to
adequately and accurately describe the NN

• System integration testing should verify that the architectural design is detailed enough so, when
implemented, the NN can interface with system hardware and software in various fidelity testbeds

• System qualification testing should verify that the system requirements are sufficient enough to
ensure that, when implemented, the NN will interface properly with the system in production

4.2. Verification of Adaptive Systems

Verification iS the process in which a piece of embedded software, such as a neural network, is tested
against its specification. Verification guidelines for Adaptive Systems are based on March 1998 IEEE/IEA
12207.0, paragraph 6.4. Types of verification to be conducted include:

• Contract

• Process

• Requirements

• Design
• Code

• Integration

• Documentation

For sake of completeness, eact-, type of verification is discussed in this section, but only as it applies to
V&V of adaptive systems.

4.2.1. Contract Verification
Contract verification includes the following steps to ensure the contracts are managed effectively:

• Verify that supplier has capability to satisfy requirements

• Ensure that requirements are consistent and cover user needs

• Provide adequate procedures for handling changes to requirements and escalating problems

• Provide procedures for _nterface and cooperation among the parties

June 12, 2002

VERIFICATION AND VALIDATION C c NEURAL NETWORKS FOR AEROSPACE APPLICATIONS Page 19

• Ensure acceptance criteria and procedures are stipulated in accordance with requirements

Contracts for vendors of adapt ve systems and independent contractors with expertise in adaptive
systems must follow these guidelines.

4.2.2. Process Verification

Process verification ensures that project planning is adequate, processes are compliant with the
governing contract and processes are being executed. It makes sure that standards, procedures and
environments for the project are adequate and that the project is staffed with trained personnel.

Each of these items pertain to adaptive systems, particularly ensuring that the project team includes
neural net experts and V&V engineers with experience in testing safety critical systems including neural
nets.

4.2.3. Requirements Verification
Requirements verification will make sure that:

• System requirements are feasible, consistent and testable

• Requirements have been appropriately allocated to hardware items, software items and
manual operations according to design criteria

• Software requirements related to safety, security and criticality are correct as shown by
suitably rigorous methods

Requirements for adaptive systems are different than traditional system requirements because neural
nets have the ability to learn. However, it is possible to verify these requirements using the following
techniques:

• Verify the description of the learning algorithm. The learning algorithm is used to adapt to neural
network to minimize the error between the desired output and the actual output. A common
approach is to calculate a mean squared error of the differences between the desired output and
the actual outputs. Note: A/ow mean squared error doesn't mean the NN has been trained
adequate/y over the entire training enve/ope. Other approaches include Newton methods and
Levenberg-Marquardt.

To understand LM, one must first know about gradient descent and Newton's method. These two
methods are used to fird the global minimum and employ different methods for selecting a
direction and step size. The following diagrams show challenges when selecting the step size
and the problems that may occur when the step size is too small or too large. Using a small step
size (a), the neural net may crawl to the global minimum but not meet response time
requirements. Using a iarge step (b) size may result in approaching the minimum but churning
back and forth.

(a.) small| step-size (b) large step-size

June 12, 2002

VERIFICATION AND VALIDATION 0 '= NEURAL NETWORKS FOR AEROSPACE APPLICATIONS Page 20

Gradient descent selects direction and step size like a "good skier going down a steep hill". It
picks the steepest poirt on the hill and descends. Unlike the skier, however, gradient descent
converges very slowly, so faster methods have been devised including Newton and Levenberg-
Marquardt.

Newton's method is the theoretical standard by which other optimization methods are judged.
Because it uses all the first and second order derivative information in its exact form, its local
convergence properties are excellent. Unfortunately, it is often impractical because explicit
calculation of the full Hessian matrix (explained in Appendix F) can be very expensive in large
problems.

The Levenberg-Marquardt method (shown in Figure 6 below) is a compromise between Newton's
method which converges quickly near a minimum but may diverge elsewhere and gradient
descent which converges everywhere slowly. The LM search direction is linear combination of
the steepest descent drrection and the Newton direction Hlg:

Wk+l= Wk-- (H + AI) -1g

Parameter A controls the compromise. This can be viewed as forcing H + XI to be positive by
adding a scaled identity matrix. The minimum value of A needed to achieve this depends on the
eigenvalues of H. The algorithm starts with ,k large and adjusts it dynamically so that every step
decreases the error. Generally it is held near the smallest value that causes the error to
decrease. In the early stages when _ is large, the system effectively does gradient descent. In
later stages, A approaches 0, effectively switching to Newton's method for final convergence. 11

Figure 6: Levenberg-Marquardt

For flight critical applications, verify that additional criteria for specifying the performance of the
neural network exists

Verify accuracy of stopping criteria (when the NN stops learning). Stopping criteria may include:

June 12, 2002

VERIFICATION AND VALIDA"/'ION OF NEURAL NETWORKS FOR AEROSPACE APPLICATIONS Page 21

o A specified error or error range

o Specific number of learning iterations

Verify weights are properly adjusted for PTNN. The network output is a function of its weights.
Consider how weights should be adjusted to minimize error.

Verify the topology of neural network. The topology can be either single or multi-layer
perceptrons. Perceptrons refer to any feedforward network of nodes with responses in the
following equation 12

y = f WkXk)

k

Note: While, it is mathematically possible to determine the topology of the neural network to
perform a given function, more often, the topology is set by watching the learning curve as the
training and cross validation data are applied. This is an iterative process.

• Verify the accuracy of the training set requirements. Verify that the number and type of
parameters and the range of the parameters are specified. In order to properly train the NN, the
amount of training data must be sufficient to train the number of weights that exist in the network.
The training data must also consider all parameters that may affect performance of the network.
For example, in the case of landing; Mach, altitude, and angle of attack are some key
parameters. However vehicle configuration parameters, such as flap setting and gear position,
are also important.

• Verify the description of the desired output data, a range of those parameters, and the level of
errors that is acceptable for adequate system performance. During training, the NN output
should be compared to the desired value to determine the maximum, mean and minimum error.

• Verify correctness of each error range for the stability coefficients

• Verify the appropriateness and use of stability proofs for the adapting algorithm. IFCS plans to
use the Lyapunov Stability Proof. A Lyapunov function has the following properties that can be
verified:

o The function must be continuous and have a continuous first partial derivative over the
domain

o The function is strictly positive except at the equilibrium point

o The function is zero at the equilibrium point

o The function approaches infinity at infinity

o The function has a first difference that is strictly negative in the domain except at the
equilibrium point 13

• For subsequent implementations of a PTNN, verify that once trained, the weights are not altered
as they are loaded into the system. This occurs when a legacy PTNN (like the PTNN used for
IFCS F-15 experiment) is used. In this situation, it is important to verify that new implementation
of the PTNN matches preceding implementations.

Appendix E contains a sample specification for a PTNN that was flown as Class B software (experimental
vehicles), using a limited, up and away flight envelop. It provides some of the information required in the
specification for a Class A (manned flight vehicles) NN.

4.2.3.1. Requirements Traceability
A tracking system for adaptive systems must contain not only the capability to track traditional
requirements, but also, enhanced traceability tools and techniques for neural nets.

June 12, 2002

VERIFICATION AND VALIDATION C _ NEURAL NETWORKS FOR AEROSPACE APPLICATIONS Page 22

Note: Most specifications have a verification and validation cross-reference matrix identifying tests
required.

4.2.4. Design Verification
Design verification makes certain that:

• Design is correct

• Design is consistent with and traceable to requirements

• Design implements proper sequence of events, inputs, outputs, interfaces, logic flow,
allocation of timing;and sizing budgets and error definition, isolation and recovery

• Selected design can be derived from requirements

• Design implements safety, security and other critical requirements as shown by suitable
rigorous methods

The design of adaptive systems is different than the traditional waterfall methodology, but very similar to
the iterative design techniques used in newer software development. For example, the iterative approach
to software design requires building more and more complex prototypes of the system until it functions
properly. The final prototype is then made production ready and implemented.

A typical NN design approach is very similar:

• First, the NN is trained on more and more complex training sets until it achieves a minimum error
with a minimum number of weights. Then, the weights are fixed and remain static for subsequent
evaluation and implementation using either test or production data.

• Then, test data is used to verify the accuracy of the NN. To ensure unbiased testing of the NN, a
test data set that is independent of the training data is used. The error metrics used (i.e. mean
square, maximum absolute...) in the NN testing should yield results comparable to those
obtained during training. In addition to verifying the training set, the internal NN test data must be
recorded and analyzed. The learning curve must be monitored to ensure that the neural
networks are not stuck at a local minimum.

In order to understand a local minimum, a global minimum must be defined. A global minimum of
a function can be defined as its lowest point (the input that gives the lowest possible output). A
local minimum is a poirt that is lower than all surrounding points, but higher than the global
minimum.

June 12, 2002

VERIFICATION AND VALIDA TION OF NEURAL NETWORKS FOR AEROSPACE APPLICATIONS Page 23

! ! I

Global Minimum

Figure 7: Global versus Local Minimum (in two dimensions)

• Finally, the output of the neural networks must be compared to the desired values to determine
the minimum and maximum, as well as the average error. Depending on the specific type of
neural network, additional internal parameters or metrics may need to be recorded to ensure
proper response.

Verification of the NN design process is divided into the following categories:

• Mathematical Approacl- to Verification of PTNN

• Verification Processes/Methods for PTNN

• Definition of the Training Set

• Other Design Process Activities

4.2.4.1. Mathematical Approach to Verification of PTNN
This section provides an overview of mathematical approach. An in depth discussion is contained in
Appendix H, V&V/ssues for Neura/Networks by Johann Schumann, NASA Ames Research Center.

The following mathematical anaJysisshould be performed during the design of the PTNN:

• Verify acceptable Output Ranges

• Sensitivity Analyses

• Scaling

• Conditioning of the Problem

• Stopping Criteria

• Training Time

• Progress of Training

Acceptable Output Ranges

June 12, 2002

VERIFICATION AND VALIDA /'ION C _ NEURAL NETWORKS FOR AEROSPACE APPLICATIONS Page 24

Check the PTNN engine to en.'_ure output falls within acceptable ranges (as defined in the requirements)
for the given input. For the PTNN, it is important to verify the output by listing stability coefficients (output
from PTNN) and compare them against valid ranges for each coefficient. Appendix F contains a list of
sample stability coefficients.

It is also critical to compare training values for the PTNN with actual output values.

For output outside the accepta_)le range, a technique called "clipping" may be used to eliminate these
outliers. As shown in the following diagram, clipping is a technique wherebY14ifan output exceeds a pre-
determined range (blue bar); the output equals the maximum of that range.

1
.=,.=..=

n n

2

i

xceeds range)

b,=

Figure 8: Clipping

The blue bar indicates a pre-determined range. As you can see the neural net output (black curve)
exceeds this range around the fourth point. Therefore, clipping allows this point to be reset to the top of
the desired range and the curve to be adjusted. This eliminates the outlier and increases system
predictability. Verify if and how clipping was implemented and test clipped points to make sure they fall
within the desired range and yield appropriate output. Also, test surrounding points using sensitivity
analysis (explained below) to ensure that surrounding points do not exceed the maximum range.

For more information about data ranges see Appendix H.

Sensitivity Analysis
Sensitivity analysis tests the smoothness of the curve at various intervals from a point in the NN.
Derivatives may be calculated and graphed showing the changes in the curve. Sensitivity analysis is
most valuable for critical data like wind tunnel data used to train the PTNN. By checking smoothness it is

possible to find anomalies that would otherwise remain hidden.

June 12, 2002

VERIFICATION AND VALIDATION CF NEURAL NETWORKS FOR AEROSPACE APPLICATIONS Page 25

f

! Look for changes arounda point to verify smoothness

f
i

J

Figure 9: Sensitivity Analysis (Smoothness)

Sensitivity Analysis is conducted by computing two derivatives. The 1stDerivative is the change in output
over the change in input plus/minus the error:

a output / (a input + E)

The second derivative is the change in the first derivative:

al a

Sensitivity Analysis should be applied to the following:

• Checking interpolation ,afwind tunnel data for PTNN to check for gaps during training

• Testing check points between knot data in the PTNN to make sure the curve is consistent (no
unexpected jumps)

• Look at the entire boundary (or a sufficient sample thereof) rather than just the corners and
midpoints

For more information about sensitivity analysis see Appendix H.

Scaling
Sometimes NN inputs are different by orders of magnitude. When this occurs, it is difficult to determine
the true error. The example below contains very small Input1 data in the range of 0 to 0.5 and very large
Input2 data in the range of 0 to 100,000. The resulting error is so small that it cannot be computed; and
therefore, becomes zero leading false belief that the NN was properly trained. Therefore, it is important
to verify that the scaling techniques used do not result in a false positive. An example is shown in the
following diagram:

June 12, 2002

VERIFICATION AND VALIDATION OF NEURAL NETWORKS FOR AEROSPACE A PPLICA TIONS Page 26

False Positive?

,,__:--_
: SCALING -"

pIB II II II II IIE I

I inpu_(o. loo,ooo_'[

For more information about scabing see Appendix H and Neural and Adaptive Systems by Principe, et
al. 15

Conditioning of the Problem
Conditioning of the problem combines sensitivity analysis and scaling. It is required when the possibility
exists that due to the nature of the input data (for example: input1 very small and input2 very large), the
error rate could become zero when the true error is not. The following figure shows a graphical example.

 uEiR oRY:
"1"'"'" \..

0 ERROR I 0 *'" "'l_

Stopping Criteria

June 12, 2002

VERIFICATION AND VALIDATION C F NEURAL NETWORKS FOR AEROSPACE APPLICATIONS Page 27

Stopping criterion relates to wqen the neural net should stop learning. There are several types of
stopping criteria:

• When the actual error is less than a specified error

• When learning iteratioqs equal a specified number

• By checking the speed of convergence. Convergence results when learning stalls meaning very
little learning occurs a'ter each iteration.

For more information about scaling see Appendix H.

Training Time

Training time is the time it takes a NN to be trained. It is important to optimize the training time by making
trade-offs between training speed and accuracy. The following factors may cause training to be slow:

• Size and distribution o! the training because each pass through the data takes twice as long when
the data is twice as bi_.

• Irrelevant data (additional patterns that contain no new information) make training slower and
provide no additional value to the learning process

• Overly restrictive convergence criteria. The acceptable error range must be chosen carefully so
as to maximize learning and minimize training time.

• Paralysis due to sigmoid saturation. Sigmoid and related functions have nearly flat tails where
the derivative is approximately zero for large inputs. Because 51 is proportional to the slope f,:
this leads to small derivative for weights feeding into the node and so on backward through the
network. If many nodes are saturated, then weight derivatives may become very small and
learning will be slow. In digital simulations, deltas may become so small that they are quantized
to zero and learning stops. Note: doub/e precision arithmetic is sometimes recommended for
this mason.

• Flat regions in the erro, surface where the gradient is small

• Ill-conditioning of the Hessian matrix (explained in Appendix F.). An ill-conditioned matrix
indicates that gradient changes slowly along one direction and rapidly along another, similar to a
narrow ridge along the top of a mountain. A small learning rate must be used to avoid instability
along the quickly changing direction to prevent falling off the ridge; however, this small step size
will result in sluggish progress along the slowly changing direction and long convergence times.

• Poor choice of parameters such as learning rate (modification to the back- propagation weight
update) and momentum (a common modification of the basic weight update rule to stabilize the
weight trajectory by making the weight change a combination of the gradient-decreasing term
plus a fraction of the previous weight change. Momentum gives a certain amount of inertia since
the weight vector will tend to continue moving in the same direction unless opposed by the
gradient term. Momentum can help avoid a local minimum because the inertia can push over the
local maximum and cortinue towards the global minimum.) 16

• Use of simple gradient descent methods when more sophisticated methods are more efficient

• Global nature of sigmoid functions. A change in one weight may alter the network response over
the entire input space. This changes the derivative fed back to very other weight and produces
further weight changes whose effects reverberate throughout the network. It takes time for these
interactions to settle.

• Poor network architectures. The minimal size network just adequate to represent the data may
require a very specific set of weights that may be very hard to find. Larger networks may have
more ways to fit the data and so may be easier to train with less chance of convergence to poor
local minima.

June I_2002

VERIFICATIONANDVALIDATION0--NEURALNETWORKSFORAEROSPACEAPPLICATIONS Page28

4.2.4.2. Verification Processes/Methods for PTNN

The following processes and methods should be performed during the design of the PTNN:

• Verify the training set. The size of the training set can be computed using the following
generalized formula where the size of the training set and the number of weights, are related.

IV< W/e

N is the number of training patterns in the training data

W is the number of weights in the NN. Note: There is one weight for
each input that feeds each neuron. Networks with two hidden layers
have more we,ghts than a single hidden layer

e is the value cff error allowed

For a 1% error Nshould be 100 times the number of weights

The training data should cover the entire domain to be learned and it must be representative of
the data to be used in the test or in production.

Verify that, when designing a NN, the learning characteristics are well understood. Learning is
directly affected by:

• Initialization of the _veights

• The learning rate o" rate of change in values of the weights

• The learning algorithm that finds the minimum error. Many learning algorithms exist, from the
basic Least Means Squared (LMS) to more computational intensive methods such as
Levenberg-Marqua_dt and Newton's method. The best method to use is based on the
complexity of the problem, the time available for the network to learn an optimum solution,
and other factors. Refer to (Principe 2000) for detailed explanations.

Verify that the learning algorithm was properly designed. The PTNN uses Levenberg-Marquardt

Verify that the appropriate NN topology was designed. NN topology affects the number of
weights, and therefore, is related to the expected error. When considering NN topology, think
about how a well-trained network will perform based on its test data set. The performance of a
trained network to test data is referred to as generalization. It is intuitive that if a NN is to learn a
function it must have a sufficient number of weights to do so. This may lead one to believe that a
larger training set is better, but this is not true.

ANN with too many weights, may not generalize well to the test data or in production. There is
no simple answer to designing the correct topology. There are two basic approaches:

• Begin with a small network, evaluate it, then grow as required

• Start with a larce network and shrink until the desired result is achieved

Some design tools use automatic or genetic methods to help find the optimum topology.

Verification Used in Flight Test of Class B PTNN
The following design recommendations are based on experience with the flight test of a Class B
experimental aircraft using a P'rNN to approximate 26 baseline aircraft stability coefficients and control
derivatives. The figure below shows the envelope in which the neural network operates (smaller
envelope) verses the larger "ACTIVE" aircraft envelope in which the neural network was trained and
tested.

June 12, 2002

VERIFICA TION AND VALIDATION CF NEURAL NETWORKS FOR AEROSPACE APPLICATIONS Page 29

7

0

6

///0 Flight // _"

xl000 4 _ # _' _ ,_:/ ACTIVE

o i_i_,/ Envelope

3 _ ii _ F-15B

0 Flight

_[L___ _" Enve,ol:

2 _:_, e
0

0 0.5 1. 1.5 2. 2.5 3.

0 Mach 0 0

Figure 10: F-15B Flight Envelope

The following verification techniques were used to ensure that the design yielded a safe, secure system in
compliance with requirements:

• First, the definition of tPe training data was considered. Training data for aircraft stability
coefficients included:

o Mach

o Altitude

o Alpha (Angle of attack)

o Angle of side sl,p

o Control surface deflections

A good understanding of aeronautics was required to identify which independent variables are
used for each stability coefficient. The number of independent variables for each coefficient
ranged from three to five. The variables are described in Appendix E.

Next, the design was checked to ensure testability by checking that the software was modular
and that each module could by tested individually, as well as, part of the whole system. Testability
also requires the instrumentation of internal parameters so that they can be recorded and

June 12, 2002

VERIFICATION AND VALIDATION OF NEURAL NETWORKS FOR AEROSPA CE APPLICATIONS Page 30

analyzed during test. Testing of all possible paths through the software, usually based on logical

settings, is also required. The primary purpose of all this testing is to verify the software meets its

specification and this system operates safely.

4.2.4.3. Definition of Training Set
Defining the training set for a neural network is the one of the most important steps. The training data

consists of the variables used on the input as well as the desired output of the system. In the case of the

PTNN, the output is a known mathematical function of the required input variables. The following table

shows a partial data set used to train the neural network. It is a function of three input variables and one

output variable which yields gocd results using a single layer neural network.

The variables are:

• MACH is the velocity in terms of MACH number (input)

• ALP is Alpha or angle o' attack (input)

• BETA is the angle of sirJe slip (input)

• CZ2 is a stability coefficient (output)

Sample Training Set

MACH ALP

0,2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

BETA CZ2
-, 0 0

-, 2 0.000371

-, 5 0.00093

-4 7.5 -0.001758
-, 10 -0.004445

-, 12.5 -0.005766

-, 15 -0.007087

-, 20 -0.005062

-2 0 0

-2 2 0.000782

-2

-2 7.5

0.001956

0.002149

-2 10 0.002343

-2 12.5 0.004838

-2 15 0.007335

Defining the test data for the neJral network is the second step. In some applications, the data that

describes the input and output relationship, is broken down into the training set and the test set. In our

example with the PTNN, we have a detailed simulation of the vehicle which allows us to have an

extensive training and test sets. The table below gives a brief description of the test set used for the

PTNN. Notice the difference in the values verses-the training set.

Sample Test Data

MACH ALP

0.2 -4

0.2 -4

BETA CZ2

0.000185

0.2 -4 3.5 0.00065

0.2 -4 6.25 -0.000415

0.2 -4 8.75 -0.003103

0.2 -4 11.25 -0.005108

0.2 -4 13.75 -0.00643
-4 17.5

2O
0.2
0.2 -4

0.2 -3

-0.00608

-0.005069

June 12, 2002

VERIFICATIONANDVALIDATION0 r-NEURALNETWORKSFORAEROSPACEAPPLICA'/'IONS Page31

0.2 -3 1 0.000287
0.2 -3 3.5 0.001006
0.2 -3 6.25 0.000812
0.2 -3 8.75 -0.00044
0.2 -3 11.25 -0.000775
0.2 -3 13.75 -0.000193

-3 17.5 0.0032450.2

4.2.4.4. Other Design Process Activities
In order to test the PTNN, it may be necessary to design and develop NN verification tools in parallel, but
independent from the primary developers. Such tools may include a NN simulator and enhanced
requirements tracking tools specifically for NN verification.

4.2.5. Code Verification

Code verification ensures that:

• Code is traceable to design and requirements, testable, correct, and compliant with
requirements and coding standards

• Code implements proper event sequence, consistent interfaces, correct data and control flow,
completeness, appropriate allocation timing and sizing budgets and error definition isolation
and recovery

• Code can be derived from design or requirements

• Code implements ,.,afety, security and other critical requirements correctly as shown by
suitably rigorous methods

Code verification pertains to the NN software rather than the training of the NN. Neural nets have
traditionally been viewed as a Llack box; however, NASA researchers modularized NN code so that it can
be considered a white box and tested accordingly. Specific tests are included in Section 4.3.3.

During code verification, enhancements may be required to make requirements tracking tools robust
enough to clearly tie requirements to neural net code. For example, visual inspection of graphs provides
an excellent way to verify NN code. However, typical tracking tools may not have a mechanism for
numbering or storing graphics or charts as proof of verification efforts. Additionally, it may be necessary
to store a special graphics viewer with a graphics file to ensure they can be viewed in the future.

4.2.6. Integration Verification
Integration verification makes sure that:

• Software components and units of each software item have been completely and correctly
integrated with hardware items

• Software items anc manual operations of the system have been completely and correctly
integrated

• Integration tasks h_ve been performed in accordance with an integration plan

NN are generally an integral pa_ of another system. For example, the NN on the IFCS is an integral part
of the flight control system. Therefore, it is important to verify that all inputs and outputs between systems
are properly scaled and that the NN properly interfaces with the control system. The following are key
items to verify for IFCS/NN integration:

• The PTNN gets sensor information from the PID (Parameter Identification). Verify that PID data
is in the appropriate form to match the PTNN data; otherwise, incoming sensor data will be
compared to a dissimilar aircraft model and erroneous stability coefficients can result.

• Verify that the PTNN recalls proper aircraft model data and feeds it to DCS.

June 12, 2002

VERIFICATION AND VALIDATION C F NEURAL NETWORKS FOR AEROSPACE APPLICATIONS Page 32

• Verify that DCS receives PTNN and PID data in the proper form.

4.2.7. Documentation Verification
Documentation verification makes certain that:

• Documentation is adequate, complete and consistent

• Documentation preparation is timely

• Configuration mar;agement of documents follows specified procedures

For the most part, descriptions of adaptive systems should be included in standard project
documentation. For example, the Verification Plan should contain a plan to verify neural nets. Any
special documentation about adaptive systems should be verified for technical accuracy by a peer review,
then, catalogued and safeguarded following standard documentation configuration management
procedures.

June 12, 2002

VERIFICATION AND VALIDATION C _"NEURAL NETWORKS FOR AEROSPACE APPLICATIONS Page 33

4.3. Validation of Neural Networks
Validation guidelines for Adaptive Systems are based on March 1998 IEEE/IEA 12207.0, paragraph 6.5.
The validation process is documented in the validation plan and consists of the following:

• Items subject to validation

• Validation environment

• Testing:

o Prepare test requi_ements, test cases and test specifications for analyzing test results

o Ensure test requirements, test cases and test specifications reflect requirements

o Conduct tests:

o Validate that the software satisfies its intended use

Each of these steps will be dis,-ussed as they relate to validation of adaptive systems.

4.3.1. Items Subject to Validation
Both PTNN and OLNN will be subject to validation to ensure they perform within acceptable ranges.
Acceptable ranges criteria must be defined in the requirements and may include a range of error
percentages, maximum number of cycles required to learn, time limits for learning, et al.

4.3.2. Validation Environment
The validation environment incudes everything necessary to conduct a test of the adaptive system
including hardware, software aqd qualified test engineers with training and expertise on V&V techniques
for neural nets.

Testbeds (Hardware)
Low, medium and high-fidelity testbeds will be necessary to properly test adaptive systems. Samples of
these testbeds are described ir, the following table:

Testbed Name

Aircraft

Simulator 2

Simulator 1

Batch Simulation

. Fidelity

Highest

Higher

Medium

Lowest

Test Hardware

Flight

Simulator with flight hardware and actual
redundant flight control system

Simulator with some flight hardware and
models of flight control software

Models running on typical Unix/Linux
workstation with no flight hardware.

The Linear Simulator is the lowest fidelity and least expensive, testbed. It runs on a typical workstation
and all aspects of the simulation are modeled in software including aerodynamics, engine models, and
flight processors. The Linear S,mulator is used to repeatedly run functional tests and regression tests.

In order to be cost-effective, the lowest fidelity testbed is used as much as possible. However, as the
system becomes more complex, certain testing can be run only on higher fidelity testbeds. Before using
a higher fidelity testbed, significant testing is done from a one-step lower fidelity testbed to ensure no
errors at that level.

June 12, 2002

VERIFICATION AND VA LIDA TION 0 = NEURAL NETWORKS FOR AEROSPACE APPLICATIONS Page 34

Higher fidelity testbeds like Simulators 1 and 2 contain a combination of software models and flight
hardware. The most common elements of these testbeds are some of the flight processors,
communication buses and a cockpit. These testbeds allows for additional testing not possible in a simpler
configuration. Typically they contain software models of nonlinear aerodynamics, engine dynamics,
actuator models, and sensor models. The hardware in the loop simulator includes the redundant flight
control computers. This configuration allows for a complete check out of all interfaces to the flight
hardware, processor timing tests, and various failure modes and effects (FMEA) testing.

The aircraft is what you could call the "ultimate simulator". It maximizes the use of flight hardware
components and minimizes the number of software models. This configuration can be accomplished in
several different ways, the actual aircraft may be tied into the nonlinear simulation, or an iron-bird aircraft
may be used to provide actuators, sensor noise, actual flight wiring, and some structural interactions. This
final configuration can also be accomplished by placing flight hardware (sensors, and actuator, and other
flight components interfaced to the nonlinear simulation) in a laboratory.

Software
As shown in the following table, different versions of NN software are available for testing purposes.

NN Software

PTNN

DCS

• Ac;a

• C running on Unix/Linux

• C funning on VxWorks

• M_ttlab

• Simulink

C (contain.'; no dynamic memory and no global data)

4.3.3. Testing
Testing is an exercise to validate that the software satisfies its intended use. Normally, test cases are
developed to follow critical paths through the software and each test case has expected results. Because
the PTNN has fixed weights, it can be tested via this traditional approach using the following advanced
techniques:

• Perform Unit Testing. Neural nets used to be considered a black box, however, NASA devised a
way to modularize NN code so white box testing can also be applied. Therefore, it is possible to
perform unit testing on neural net code to find errors.

Unit testing may be requirements-driven or design-driven. Requirements-driven or black box
testing is clone by selecting the input data and other parameters based on the NN software
requirements and observing the outputs and reactions of the software. Black box testing can be
done at any level of integration. In addition to testing for satisfaction of requirements, some of the
objectives of requirements-driven testing are to ascertain:

• Computational correctness.

• Proper handling of boundary conditions, including extreme inputs and conditions that
cause extreme outputs.

• Proper behavior under stress (fixed and random inputs) or high load (many inputs at
once). Note: The aerospace industry also includes this task in the verification process.

• Adequate error detection, handling, and recovery

Design-driven or white box testing is the process where the tester examines the internal workings
of code. Design-driven testing is done by selecting the input data and other parameters based on

June 12, 2002

VERIFICATION AND VALIDAI ION C _ NEURAL NETWORKS FOR AEROSPACE APPLICATIONS Page 35

the internal logic paths, to be checked. The goals of design-driven testing include ascertaining
correctness of:

• All paths through the NN code. For most software products, this can be feasibly done
only at the unit test level.

• Bit-by-bit functioning of interfaces

• Size and timing of critical elements of software code. Note: The aerospace industry also
includes this task in the verification process.

• Test the frequency response and phase and gain margins - these tests require a model of the
aircraft dynamics and are performed to ensure proper mil specs are met for stability

• Perform failure modes and effects (FMEA) testing - failure modes and effects testing is one of the
most challenging because of the various types and combinations of failures. For the PTNN,
failures of all input parameters need to be tested. Tolerance "failures" as well as true failures
need to be evaluated to ensure system performance is within design requirements specifications.

• Sensitivity analysis - usually performed on flight control gains to ensure proper stability and flying
qualities. These values can be used to determine the maximum error for the PTNN. Careful
consideration should be given to the transonic area where gains can change rapidly and therefore
must be more accurate.

• Timing - flight computer timing tests must ensure that, under the worst case scenario, the system
has adequate performance, or degrades gracefully when saturated. Currently, methods have
been used to measure spare CPU time. If the PTNN is interfaced using communication
protocols, such as mil-std 1553, timing tests are also required with the entire system operating as
in flight.

• System utilization - car" refer to timing, but it also refers to memory available, data through put
and other system specific resources.

• Time to adapt for DCS and OLNN. Note: PTNN do not adapt.

• Piloted evaluation - ability of the pilot to fly the aircraft in all conditions is paramount. Nominal,
across the envelope, fl'/ing qualities must be evaluated, along with evaluations with failure modes
and transients.

Additional validation activities for IFCS PTNN include:

• Checking interpolation of wind tunnel data for PTNN to check for gaps during training

• For PTNN, check points between data to make sure the curve is consistent (no unexpected
jumps).

• List stability coefficients output from PTNN and compare against valid ranges

• Check that PTNN data sent to ground via telemetry is accurate to validate that the PTNN is
working in the flight environment.

• Compare training values with actual output values

June 12, 2002

VERIFICATION AND VALIDATION 0 _ NEURAL NETWORKS FOR AEROSPACE APPLICATIONS Page 36

4.4. V &V Metrics
The following metrics used for traditional software may be applied to NN:

Testing Metrics:

• Planned and actual hours for each NN test

• Tracking of NN tests tc_NN requirements - % Complete

• Number of NN Tests (Cases/Procedures)

• Planned and actual start date for each NN test

• Planned and actual end date for each NN test

• Number of NN defects by classification

• Time required for NN to learn

Metrics for Inspections and/or Reviews:

• Planned and actual hours for each reviews (peer and independent)

• Date package distributed for review or inspection

• Planned and actual start date for each review

• Planned and actual end date for each review

• Date defects consolida_ed after review or inspection

• Base number of defect,_ (critical vs. non-critical)

NN Metrics:

• Learning time

• Recall response time

• Accuracy

• Repeatability

• Robustness in the face of failures

June 12, 2002

VERIFICATION AND VALIDATION CF NEURAL NETWORKS FOR AEROSPACE APPLICATIONS Page 37

4.5. Independent Verification and Validation (IV&V)
Independent Verification and Validation (IV&V) is a process whereby the products of the software
development life cycle phases are independently reviewed, verified, and validated by an organization that
is neither the developer nor the acquirer of the software.

NASA Procedures and Guidehnes (NPG) 8730.DRAFT 2, Software Independent Verification and
Validation (IV& V) Management discusses the requirements for independent verification and validation.
In a nutshell, a manned mission and any mission or program costing more than $100M will require IV&V.

The IV&V agent should have ro stake in the success or failure of the software. The IV&V agent's only
interest should be to make sure that the software is thoroughly tested against its complete set of

requirements.

The IV&V activities duplicate the V&V activities step-by-step during the life cycle, with the exception that
the IV&V agent does no informal testing. If there is an IV&V agent, the official acceptance testing may be
done only once, by the IV&V agent. In this case, the development team will demonstrate that the software
is ready for official acceptance

June 12, 2002

VERIFICATION AND VALIDATION C f=NEURAL NETWORKS FOR AEROSPA CE A PPLICA TIONS Page 38

5.APPENDIX A: ACRONYMS

Term

AI

ANSI

ARC

CCB

CM

COTS

CVS

EIA

FMEA

FMECA

FIFO

IEC

IEEE

ISO

IV&V

MIL STD

NASA

NPD

NPG

PID

RMA

RTCA

SW

UML

I Definition

I Artificial Intelligence

American National Standards Institute

Ames Research Center

Change Control Board

Configuration Management

Commercial Off The Shelf

Concurrent Version System

Electronic Inaustries Association

Failure Mode Effects Analysis

Failure Mode Effects and Criticality Analysis

First In First Out

International Electro-technical Commission

Institute of Electrical and Electronic Engineers

International Organization for Standardization

(NASA) Independent Verification & Validation

Military Standard

National Aeronautical Space Administration

NASA Policy Directive

NASA Procedures and Guidelines

Parameter Inclentification

Reliability, Maintainability, Availability

Requirements and Technical Concepts for Aviation

Software

Unified Modeling Language

USA United Space Alliance

V&V Verification & Validation

Note: More Acronyms: http://www.ksc.nasa.gov/facts/acronyms.html

June 12, 2002

VERIFICA TION AND VALIDATION O= NEURAL NETWORKS FOR AEROSPACE APPLICATIONS Page 39

6.APPENDIX B: GLOSSARY

items

Adaline

Algorithm

ANN

Axon

Back Propagation

Black Box testing

Codebook Vector

Connection

CSCI

Eigenvalue

Epoch

Feedback
Network

Feedforward
Perceptrons

Fidelity

FMENFMECA

Gram-Schmidt

Hamming
Distance

Definition

Adaptive element for multilayer feedforward networks introduced by Widrow

A rule or procedure for solving a problem 17

Artificial Neural Network. Large parallel network of interconnected elements and
their organization.

Output branch from a biological neuron consisting of many collateral branches that
contact Cifferent neurons.

Weight-vector optimization method used in multilayer feedforward networks.
Differences in the in the actual outputs are measured with respect to the desired
outputs are feed backwards towards the inputs and used to adjust the weights of
the neurons.

Requirements-driven testing where engineers select system input and observe
system o,Jtput/reactions

A parameter vector similar to a weight vector but used as a reference vector in
vector quantization methods such as Self Organizing Maps and Learning Vector
Quantization paradigms.

Link between neurons, coupling signals is proportion to its weight parameter.

CSCI - Computer Software Configuration Item (a term used in NASA or Military
standards to describe a product like a jet engine or a computer system.

Scalar value for which an operator equation of a linear equation can be
determined.

A finite set of meaningful inputs patterns introduced sequentially

A network in which signal paths can return to the same nod e. Feedforward
network A network in which signal paths can never return to the same signal
node.

The term perceptron refers to a feedforward network of nodes with response like
those shown in Figure 2 above. Feedforward means there are no connection
loops that would allow output to feed back to their inputs and change the output at
a later time. In other words, the network implements a static mapping that
depends only on present inputs and is independent of previous system states.

Integrity or testbed. For example: low fidelity testbed may have a simulator rather
than actual spacecraft hardware. The highest fidelity testbed is the actual
hardware being tested

FMEA - Failure Mode Effects Analysis

FMECA - Failure Mode Effects and Criticality Analysis

FMEA and FMECA aides in determining what loss of functionality occurs due to an
unremediated fault state

An algebraic method used to find orthogonal basis vectors in a linear subspace.

The number of dissimilar elements in two ordered sets.

June 12, 2002

VERIFICATIONANDVALIDATIONC_.FNEURALNETWORKSFORAEROSPACEAPPLICATIONS Page40

Items

Hard-Limit Output

Hebb's Law

Hidden Layer

Hopfield Network

Inhibition

Input Activation

Input Layer

Learning Rate

Learning Rate
Factor

Learning Rate
Quantization

Lyapunov
Function

Madaline

Markov Model

Nominal

Off-Nominal

Software V&V

Definition

A result or output, usually associated with a neural transfer function, that becomes
saturated when its value reaches an upper or lower bound.

The most frequently cited learning law in neural-network theory. The synaptic
activity is assumed to increase in proportion to the product of presynaptic and
postsynaptic stimulus.

An intermediate layer of neurons in a multilayer feedforward network that has no
direct signal connection to inputs or outputs.

A state transition neural network that has feedback connections between all
neurons. The energy-function paradigm was developed by Hopfield.

A synapt c control action that decreases the activation of a neuron by
hyperbolizing its membrane.

An implicit variable associated with a neuron, usually an input signal or a synaptic
weight. The output activity is determined as a function or differential equation
related to the input activation.

The layer of neurons which receives input signals and stimulus.

The true earning rate or rate of change in parameters relating to one learning step
or time constant.

The factor used to multiply the error rate of a system parameter which determines
the learning rate.

A superwsed-learning vector quantization method where the decision surfaces
relating to the Bayesian classifier are defined by the nearest-neighbor
classification with respect to sets of codebook vectors assigned to each class and
describing it.

A non-negative objective function that can be defined for optimization problems. If
there exists a Lyapunov function, every learning step decreases it and a local
minimum is reached.

A multilayer feedforward network made of Adaline elements.

A statistical model that describes input-output relations of sequentially occurring
signals using internal hidden states and transitional probabilities between them.
The probability functions of the hidden states are identified on the basis of training
data, usually in the training data.

Expected behavior for no failure, for example: nominal behavior for a valve may
be "open" or "shut"

Unexpected failure behavior, for example: off-nominal behavior for a valve may be
"stuck open" or "stuck shut"

Process of ensuring that software being developed or changed will satisfy
functional and other requirements (verification) and each step in the process of
building the software yields the right products (validation). In other words:

• Verification - Build the Product Right

• Validation - Build the Right Product

June 12, 2002

VERIFICA TION AND VALIDATION C F NEURAL NETWORKS FOR AEROSPACE APPLICATIONS Page 41

Items

Telemetry

Validation

Definition

Process of measuring data at the source and transmitting it automatically.
Telemetric applications include measuring and transmitting data from space flights,
meteorological events, wildlife tracking, camera control robotics and oceanography
studies. 1_

Build the Right Product

Verification Build the Product Right

White Box Design-_riven testing where engineers examine internal workings of code
Testina

June 12, 2002

VERIFICATIONANDVALIDATIONOFNEURALNETWORKSFORAEROSPACEAPPLICATIONS Page42

7.APPENDIX C: FOR MORE INFORMATION

V&V Standards:
IEEE Standard for Software Verification and Validation 1012-1998

Websites:
MIL STD 498 http://www.poqner.demon.co.uk/mil 498

http://www.comsivam.org/reference/498/

June 12, 2002

VERIFICA TION AND VALIDATION C F NEURAL NETWORKS FOR AEROSPACE APPLICA TIONS Page 43

8.APPENDIX D: SELF ORGANIZING MAPS
The Self-Organizing Map (SOM) was developed by Prof. Teuvo Kohonen in the early 1980s as a
visualization tool to aid in the evaluation and understanding of high- dimensional data. SOMs are
represented as sheet-like neural-network arrays, which reduce and project highly dimensional data on a
map of 1 or 2 dimensions and olot the similarities of data by grouping similar data items together. The
goal is to construct topology-preserving mappings of training data where the location of a unit facilitates
the clustering of data, creating a two-dimensional display of the input space that is easy to visualize.

The learning process is competitive and unsupervised, that is, no teacher is needed to define the correct
output for an input. Only one map node (winner) at a time is activated corresponding to each input.
Neurons are allowed to change themselves by learning to become more like samples in hopes of winning
the next competition. The locations of the responses in the array tend to become ordered in the learning
process. The basic premise in the SOM learning process is that, for each sample input vector, the winner
and the nodes in its neighborhood are changed closer to the input vector in the input data space.
SOMs organize themselves by competing for representation of the samples. Neurons are allowed to
change themselves by learnin_ to become more like input samples in hopes of winning the next
competition. It is this selection and learning process that makes the weights organize themselves into a
map representing similarities.

To construct a SOM, the weight vectors are first initialized. Then, a sample vector is randomly selected
and the map is searched for weight vectors to find which weight best represents that sample. Each weight
vector has a location and neighboring weights that are close to it. Being able to become more like that
randomly selected sample vector rewards the weight that is chosen. In addition to this reward, being able
to become more like the chosen sample vector also rewards the neighbors of that weight.

The selection of the best matching unit consists of inspecting all of the weight vectors and calculating
the distance from each weight to the chosen sample vector. The weight with the shortest distance is the
winner. If there is more than one with the same distance, then the winning weight is chosen randomly
among the weights with the shortest distance. The most common method for determining that distance is
to calculate the Euclidean distance, i.e.

,7_, xi2

i=0

where x[i] is the data value at the ith data member of a sample and n is the number of dimensions to the
sample vectors. Scaling the neighboring weights: determining which weights are considered as
neighbors and how much each weight can become more like the sample vector. The neighbors of a
winning weight can be determined using a number of different methods.

The amount of neighbors decreases over time. This is done so samples can first move to an area where
they will probably be, then they
jockey for position. This process is similar to coarse adjustment followed by fine tuning.

The initial radius is set really hich, some value near the width or height of the map.

Sample data sets consisting of real vectors or the discrete-time coordinates are mapped onto an array.
Each node i in the map contains a model vector, which has the
same number of elements as the input vector.

June 12, 2002

VERIFICATION AND VALIDATION O= NEURAL NETWORKS FOR A EROSPA CE APPLICATIONS Page 44

The stochastic SOM algorithm performs a regression process. The initial values of the components of the
model vector may be selected at random but are more efficiently initialized in some orderly fashion, e.g.,
along a two-dimensional subspace
spanned by the two principal e genvectors of the input data vectors.

Any input item is thought to be mapped into the location, the output of which matches best with in some
metric. The self-organizing algorithm creates the ordered mapping as a repetition of the following basic
tasks:

An input vector is compared with all the model vectors. The best-matching unit (node) on the map, i.e.,
the node where the model vector is closest to the input vector in some metric is identified. This best
matching unit is called the winr'er.

2. The model vectors of the winner and a number of its neighboring nodes in the array are changed
towards the input vector according to the learning principle specified below.

Each node is

with a model

vector, mj

I

RGB values

_t match--8

omt _arhood
l_fU, N°

\ /
'_ conm_er_s from each x /

stxe_ ot "'['xi I

inputs

June 12, 2002

VERIFICA lION AND VALIDATION 07 NEURAL NETWORKS FOR A EROSPA CE A PPLICA TIONS Page 45

Adaptation of the model vector:_ in the learning process may take place according to the following
equations:

rn./(t 4- 1) --- r_(t) 4- _x(t)[x(t) - rn_(0]

rn./(t 4- 1) --- m/(0

otherwise,

for eat1,i e N=(t),

where t is the discrete-time index of the variables, the factor

c [0,1]
is a scalar that defines the relative size of the learning step, and Nc(t) specifies the
neighborhood around the winner in the map array.

At the beginning of the learning process the radius of the neighborhood is fairly large, but it is made to
shrink during learning. This ensures that the global order is
obtained already at the beginning, whereas towards the end, as the radius gets smaller, the local
corrections of the model vectors in the map will be more specific.
The factor also decreases during learning.

One method of evaluating the cuality of the resulting map is to calculate the average quantization error

{llx-
over the input samples, defined as E
c indicates the best-matching unit for x. After training, for each input sample vector the best-matching unit
in the map is searched for, and the average of the
respective quantization errors is returned.

June 12, 2002

VERIFICATION AND VALIDATION OF NEURAL NETWORKS FOR AEROSPACE APPLICATIONS Page 46

9.APPENDIX E: SAMPLE REQUIREMENTS FOR
THE PRE-TRAINED NEURAL NETWORK:

The PTNN shall[] generate sufficient stability derivatives to provide values used by other software on the
F-15 research aircraft including the SOFFT controller for flight control. The PTNN outputs shall [] be
accurate enough to ensure vehicle stability through out the flight envelop.

Compact - shall [] require less than 512KB of EPROM, 256K of RAM (storage available in the original
computational environment, the VMSC)

Execute in real-time in an on-board aircraft processor - Execute at approximately 40Hz in the F-15
ACTIVE VMSC processor (a Motorola 88000 processor)

High accuracy over entire flight envelope - Maximum errors less than approximately 15% of variable
range, rms. errors less than approximately 5% of variable range.

Network Inputs
The inputs for the PTNN are mach, altitude, alpha (angle of attack), beta (sideslip angle), stabilator
deflection, canard deflection, rudder deflection, and aileron deflection.

The maximum number of inputs any one sub network will have is 5. The minimum number of inputs for
any sub network is 3.

Altitude dimensions are in feet. Alpha, beta, stabilator deflection, canard deflection, rudder deflection,
and aileron deflection are in degrees. Mach is in mach number.

The inputs of beta and rudder ceflection are magnitudes only and they are passed through an absolute
value function to eliminate their sign.

Networks for C. , Cm,_ , Cz6c , C,,,_c , C%,

deflection, and canard deflectioq.

Cm_' have inputs of mach, altitude, alpha, stabilator

Network for Cz< has inputs of roach, alpha, and beta.

Network for Cm< has inputs of roach, alpha, beta, and rudder deflection.

Network for C,,q has inputs of roach, altitude, and alpha.

Networks for Cy_, C_, C,_ have inputs of mach, altitude, alpha, beta, and canard deflection.

Networks for Cy__, Ct_- , C,_, Cy_., Ct_" , C,_, have inputs of mach, altitude, alpha, beta, and rudder

deflection.

Networks for Cy, , C_, C% have inputs of mach, altitude, alpha, and aileron deflection.
a "a '

Networks for CyB,, Czp,, C,_, have inputs of mach, alpha, beta, and stabilator deflection.

June 12, 2002

VERIFICATION AND VALIDA TION OF NEURAL NETWORKS FOR AEROSPACE APPLICATIONS Page 47

Networks for Cy_r, Ct_, Cn# have inputs of mach, altitude, alpha, and stabilator deflection.

Networks for Cy_ c , C_,,_c, Cn :ochave inputs of mach, altitude, alpha, and canard deflection.

Networks for Cs_, C,_, Ct,, C'n, have inputs of mach, altitude, and alpha.

Input Domain
Training data applied to the ne_Jral networks shall [] be generated from the existing ACTIVE database
(95-96 Annual IFC Report). The PTNN was trained and tested for a small range of the F-15 ACTIVE's
flight envelope. The envelope _sdefined as:

5000 feet < ALTITUDE < 5000_) feet
0.2 < MACH < 1.6

All of the control surface deflections shall [] be modeled for the training data to their respective position
limits except for the positive caqard deflection. The positive canard deflection was modeled to 5 degrees
instead of the maximum limit of 15 degrees because the canard on the F-15 ACTIVE schedule does not
exceed 5 degrees. Sideslip angle data was included for sideslips up to 10 degrees for all flight
conditions.

Inside of the training flight envelope, two sub-envelopes were defined based upon alpha. Some of the
networks experienced large training/testing errors or network sizes, so the flight envelope was reduced to
avoid these regions. (No data exists for which networks have reduced flight envelopes.)

The result of the data selection from the ACTIVE database shall [] be 34 training sets of 3-5 independent

variables with approximately 500-100,000 records each.

It is important to note that this e,nvelope does not include a landing configuration or thrust vectoring
effects.

Input Pre-Processing
The eight inputs into the PTNN shall undergo some pre-processing before their inputs are applied to the
network.

The absolute value of beta is re-assigned to the beta variable. If beta is larger than 10.0, it is assigned a
value of 10.0.

The absolute value of the rudder deflection is re-assigned to the rudder variable. If the rudder deflection
is larger than 30.0, it is assigned a value of 30.0.

If mach is smaller than a value 3f 0.2, it is re-assigned a value of 0.2. If mach is larger than 1.6, it is re-

assigned a value of 1.6.

If altitude is smaller than 5000.0, it is re-assigned a value of 5000.0. If altitude is larger than 50000.0, it is

re-assigned a value of 50000.0.

If the stabilator deflection is smaller than -30.0, it is re-assigned a value of -30.0. If the stabilator
deflection is larger than 15.0, it s re-assigned a value of 15.0.

If the aileron deflection is smaller than -40.0, it is re-assigned a value of -40.0. If the aileron deflection is

larger than 40.0, it is re-assigned a value of 40.0.

If the canard deflection is small_.r than -35.0, it is re-assigned a value of -35.0. If the canard deflection is

larger than 5.0, it is re-assignee a value of 5.0.

June 12, 2002

VERIFICATION AND VALIDATION OF NEURAL NETWORKS FOR AEROSPACE APPLICATIONS Page 48

If alpha is smaller than -4.0, it is re-assigned a value of -4.0.

If mach is less than or equal to 0.85 or altitude is larger or equal to 25000.0 and only then if alpha is
greater than 20.0, alpha is re-assigned a value of 20.0. If the mach and altitude conditions are not met
and if alpha is greater than 14.0, alpha is re-assigned to 14.0.

Network Topology
The network chosen for the PTNN shall [] be a multilayer perceptron network architecture. The
perceptrons shall be able to accept multiple inputs. The perceptrons shall use a digital approximation to a
hyperbolic tangent as the activation function for processing of input data.

Each network consists of at least one hidden layer of neurons and a possible second layer of neurons.
The output of the sub-network is a weighted summation of the outputs from each neuron in the last layer
which is combined with a bias. The weights are adjusted based on the learning algorithm. Once trained,
the weights are frozen and shall not change during operational use.

Network Outputs
There shall [] be a total of 44 ir,dividual values which are generated as outputs for the PTNN. They are
as follows:

C_ C:_ C% C.c. C=_ C:,.

Cm_ Cm_ z Cm_q Cmac, Cm_ c Cm,, Cmq

CyB,Cy_ Cyp, Cy_,Cy_ Cy,,_cCy,. Cy,o

Ct,, C_ Ci_' CtB C_,_Ct,_: Ci,. C_,°C_pCl.

C,,_,,C,,_ C,,B,C,,p C,,,.r C,,,oc C,,,. C,,,oC,,, C,,,

O_c commanded canard deflection, commanded stabilator deflection
_a

Neural network learning method
Levenberg-Marquardt Optimization shall [] be used as a nonlinear optimization because it significantly
outperforms gradient descent and conjugate gradient methods for medium sized
problems. It is a pseudo-second order method which means that it works with only function evaluations
and gradient information but it estimates the Hessian matrix using the sum of outerproducts of the
gradients. The mean squared error of the difference from the neural network and the desired value shall [
] be appropriate for the derivative range.

Network verification
Once the network has been trained, it shall [] be tested using a different data set from that used for
training. It shall [] cover the entire range values for each input into the network. The maximum error in
any derivative shall be 15% ant the average error less than 5%.

System validation with the PTNN.
The following validation shall [] be performed:

June 12, 2002

VERIFICA lION AND VALIDATION OF NEURAL NETWORKS FOR AEROSPACE APPLICATIONS Page 49

• System Integration Test (Open-Loop with Flight Hardware)

• Pilot-Vehicle Interface, Mode Transitions

• Failure Modes, Timing

• Hardware-in-the-Loop Simulation

• Handling Qualities

• Pilot-Vehicle Interface, Mode Transitions

• Failure Modes, Timing

Gain sensitivity analysis

• Analyzed gain sensitivity to noisy inputs and sensor errors

• Error perturbations on nominal Neural Net inputs

Two flight conditions shall [] be examined
0.64M/16kft, 1.35M/34kft

All 8 neural net inputs to be perturbed
AOA
Beta
Mach
Altitude
Collective Stab
Collective Canard
Rudder
Differential Aileron

_ 2° in 0.25 ° increments
_+2° in 0.25 ° increments
_ 0.04 Mach in 0.005 M increments
_ 500 ft in 125 ft increments
__4° in 0.5 ° increments

_+4° in 0.5 ° increments
_ 4° in 0.5 ° increments

+ 4° in 0.5 ° increments

Maximum within tolerance failures simulated on all single and dual string sensors
Sensors analyzed:
13(single string)
AOA probes (dual string)
Qc (dual string)
Ps (dual string)

Aero increments study shall [] be performed;
Three primary stability and control derivatives analyzed
Cm_,, Cm_stab, Cn_
Each derivative was incremented +100% and -50%

In all cases the flying qualities shall be acceptable, and flight control phase and gain margins within limits.

June 12, 2002

VERIFICATION AND VALIDA TION Of NEURAL NETWORKS FOR AEROSPACE A PPLICA"/-IONS Page 50

10. APPENDIX F: HESSIAN MATRIX
A Hessian matrix, H, of error w_th respect to the weights is the matrix of second derivatives with the
following elements:

a- E
hiE=

aw Swj

Knowledge of the Hessian is important for the following reasons:

• Convergence of many optimization algorithms is governed by characteristics of the Hessian
matrix. In second-order optimization methods, the matrix is used explicitly to calculate search
directions. In other cases, it may have an implicit role.

• Some pruning algorithms use Hessian information to decide which weights to remove

• The inverse Hessian can be used to calculate confidence intervals for the network outputs

• Hessian information can be used to calculate regularization parameters

• Hessian information can be used for fast retraining of an existing network when additional training
data becomes available

• At a local minimum of the error function, the Hessian will be positive definite. This provides a way
to determine if learning has stopped because the network reached a true minimum or because it
"ran out of gas" on a flat spot 19

June 12, 2002

VERIFICATION AND VALIDATION 0-- NEURAL NETWORKS FOR AEROSPACE APPLICATIONS Page 51

11. APPENDIX F: STABILITY COEFFICIENTS

Stability Derivative Name

Coefficient of normal force with respect to alpha

Coefficient of normal force with respect to canard deflection

Stability Derivative
Symbol

Cz_

Cz_

Coefficient of normal force with respect to stabilator deflection C%

Coefficient of pitching momeqt with respect to alpha C,._

Coefficient of pitching moment with respect to canard deflection C
m&

Coefficient of pitching momet_t with respect to stabilator deflection C
ms_

Coefficient of pitching momeqt with respect to pitch rate Cmq

Coefficient of side force with respect to sideslip C
y_

Coefficient of side force with respect to differential tail deflection

Coefficient of side force with -espect to differential canard deflection

Coefficient of side force with respect to rudder deflection

Coefficient of side force with respect to aileron deflection

C
Yd T

Cy_ a

Coefficient of rolling moment with respect to sideslip C_

Coefficient of rolling moment with respect to differential tail deflection Ct_

Coefficient of rolling moment with respect to differential canard deflection C_o,.

Coefficient of rolling moment with respect to rudder deflection

Coefficient of rolling moment with respect to aileron deflection

Coefficient of rolling moment with respect to roll rate (roll damping)

Coefficient of rolling moment with respect to yaw rate

Cl& r

el r

Coefficient of yawmg momenl with respect to sideslip C,B

Coefficient of yawing moment with respect to differential tail deflection C',_

Coefficient of yawing moment with respect to differential canard deflection C,_oc

Coefficient of yawing moment with respect to rudder deflection Cn_.

Coefficient of yawing moment with respect to aileron deflection

Coefficient of yawing moment with respect to roll rate

Coefficient of yawing moment with respect to yaw rate (yaw damping)

C/18 a

tlp

Cn r

June 12, 2002

VERIFICATION AND VALIDATION O_ NEURAL NETWORKS FOR AEROSPA CE APPLICATIONS Page 52

12. APPENDIX G: INTELLIGENT FLIGHT
CONTROL SYSTEM (IFCS)

The Intelligent Flight Control System (IFCS) is being constructed as part of the Intelligent Flight Control
(IFC) project, a collaborative effort among NASA Dryden Flight Research Center (DFRC), the NASA Ames
Research Center (ARC); the Boeing Phantom Works (BPW); Institute for Software Research, Inc (ISR); and
West Virginia University (WVUI. Results from the IFC project will feed an overall strategy aimed at
advancing flight control technoiogy for civil and military aircraft, reusable launch vehicles, uninhabited
vehicles, and space vehicles.

The goal of IFC is to develop and demonstrate a flight control system that can efficiently identify aircraft
stability and control characteristics using neural networks and utilize this information to optimize aircraft
performance in both normal and simulated failure conditions.

The IFCS will be tested in flight on the NASA F-15B (AFSN 71-0290 NASA 837). This aircraft has been
highly modified from a standard F-15 configuration to include canard control surfaces, thrust vectoring
nozzles, and a digital fly-by-wire flight control system. This aircraft has been previously used for intelligent
flight controls work. Flight-testiqg the online learning system will demonstrate a flight control mode for a
damaged fighter or transport aircraft that can return the aircraft safely to base.

Background
During the last 30 years, at least 10 aircraft have experienced major flight control system failures claiming
more than 1100 lives. Therefore, the National Transportation Safety Board (NTSB) recommended
"research and development of backup flight control systems for newly certified wide-body airplanes that
utilize an alternate source of motive power separate from that source used for the conventional control
system." NASA investigated and found that neural networks safely and effectively supply these alternate
sources of power while providir_g consistent handling qualities across flight conditions and for different
aircraft configurations. Under normal operating conditions, the flight control system uses conventional
flight control surfaces. Under damage or failure conditions, neural nets allow the system to use
unconventional flight control surface allocations, along with integrated propulsion control, when additional
control power is necessary for achieving desired flight.

Additionally, neural networks aliow the system to operate without emergency or backup flight control
mode operations. This system can also utilize, but does not require, fault detection and isolation
information or explicit parameter identification. In simulated flight tests by NASA test pilots, intelligent
flight control systems improved handling qualities and significantly increased survivability rates under
various simulated failure conditions. 2°

The IFCS incorporates the neural network technology from the NTSB research project described above.

IFCS Example
The following figure shows on overview of how the IFCS responds to a failure of a control surface (left
aileron). Flight critical parameters are passed from sensors to a real-time parameter identification (PID)
algorithm to measure the stabilky parameters of the aircraft (during flight). The onboard neural networks
(PTNN and DCS) interpret the results from the PID and pass them to flight control system for use by
adaptive control laws to optimize the flight response of the aircraft during this failure (as well as under a
variety of maneuvering conditions).

June 12, 2002

VERIFICATION AND VALIDATION Or =NEURAL NETWORKS FOR AEROSPACE APPLICATIONS Page 53

[Flight CriticalParameters

___ Optimal Control IResponse

Figure 11: Failure of Control Surface and Optimal Control Response

The subsequent figure illustrates a more detailed view of the IFCS. Sensor data flows to the Pre-Trained
Neural Network (PTNN), Parameter Identification (PID) and Online Learning Neural Network (OLNN). The
PTNN contains baseline derivatives computed from wind tunnel data. Because actual flight conditions may
vary from wind tunnel data, actual sensor data from the PID is compared to the baseline derivative.
Negative comparison results indicate a derivative error. This derivative error is passed to the OLNN for a
correction. The OLNN computes a correction and passes it to the SOFFT controller, which takes into
account the pilot inputs and provides control commands to the aircraft.

'Seni°r'] 1 lI

¢°_r°/nds/ d:rr:ec_i°nder,va,h,o,L _r_:;

pilot I SOFFT seJecu°"/ error

(CLAWs
inputs _; & RiccatiSolver I

Figure 12: IFCS Overview

June 12, 2002

VERIFICA "lION AND VALIDATION 0t-- NEURAL NETWORKS FOR AEROSPACE APPLICATIONS Page 54

SOFFT (Stochastic Optimal Feed-Forward & Feedback Technology) is a flight control architecture that is
based on an explicit model-following concept. The SOFFT controller attempts to match the desired
performance characteristics, w_ich are pre-selected by the pilot through the use of DAG (Dial a Gain) sets.
It uses the neural network stability and control derivatives data to establish the plant model that controls the
aircraft so it can achieve the desired handling qualities, and to continually optimize the feedback controller
by integrating the neural network data in a real-time Ricatti solver process that calculates feedback gains at
10 Hertz. CLAWS and the Riccati Solver are part of SOFFT.

June 12, 2002

VERIFICATION AND VALIDATION Or: NEURAL NETWORKS FOR AEROSPACE APPLICA TIONS Page 55

13. APPENDIX H:
NETWORKS

V&V ISSUES for NEURAL

Copied directly 'rom V&V Issues for Neural Networks by Johann Schumann

13.1. Introduction
V&V of Neural Networks is a very difficult topic. Even, for pre-trained neural networks (PTNN), no
standard methods for their verification and validation have been developed. Neural network training
algorithms are a specific kind o_numerical optimization algorithms. Therefore, their properties and
implementation needs to be carefully studied from the point of view of numerical code.

This report focuses in these latter aspects. It discusses a number of issues and criteria which are
important for proper functioning of a neural-network based system. They all deal with numerical aspects
of the training and network eva uation algorithms. Although this report is concentrated on PTNNs, many
of these issues also arise for or_-Iine trained NNs.

The aim of this report is to make the designer and the V&V person aware of (numerically oriented)
problems which can occur in the design and implementation of a neural-network based system. Because,
the issues, discussed in this report are often treated as implicit assumptions, it is worthwhile to check
during the V&V phase if all these assumptions are indeed correct and have been implemented
appropriately. Thus, this report _.riesto provide starting points and ideas for developing V&V processes (or
to improve them), rather than tc solve existing problems.

This report is structured as follows: In Section 12.2, we define the notion used throughout this paper. In
the subsequent sections, we di._,cuss individual topics:

• Section 12.3 covers prcblems which can occur with respect to the ranges of the inputs and
outputs of the neural network, especially boundary values, or isolated singularities.

• Section 12.4 focuses on roundoff errors which can occur whenever real numbers (from _i) are

represented in a digital computer by floating-point numbers (e.g., float or double). Here, we
discuss how round-off errors can influence the behavior of the neural-network training algorithms,
and point out that for V&V purposes, it is important to also check the (built-in) library functions

(e.g., Wor _) for accuracy.

• Input or output values which are magnitudes apart can lead to severe problems. Section 12.5
illustrates scaling problems and discusses the influence of (bad) scaling on the neural network
recall and_ behavior. We also demonstrate with an example that a seemingly simple

function ;_() can =.eadto very bad results when scaling is not done properly. In this section,

we also describe techniques how to scale the input data and/or the NN training algorithm.

• An important characteristic of the approximated function is its smoothness and its behavior with

respect to small changes in the input values. If, for a small change in the input, e.g., _, the

output differs substantially from the output, given _, problems are close at hand. Section 12.6
gives an introduction into the sensitivity analysis of a neural network and illustrates the approach
with two examples.

• A traditional metric for the behavior of a numerical problem is the so-called condition number.
Section 12.7 discusses, how a condition number can be calculated for feed-forward neural
networks, and it also describes some techniques for a fast, approximate calculation of the
condition number.

June 12, 2002

VERIFICA TION AND VALIDATION Or--NEURAL NETWORKS FOR AEROSPACE APPLICA TIONS Page 56

Section 12.8 focuses on numerical issues of the training algorithm. Here, we do not focus on a
specific training algorithm (e.g., gradient descent or Levenberg-Marqhardt). Rather, we consider
the training problem in a generic way as the task to find a (global) minimum of the error function.

In this section, we first discuss the general properties of such an algorithm. Then, we illustrate
with a well-known example, what can go wrong during the training: the progress of the training
can go toward zero, i.e., we stall, or--despite good progress--we end up with a diverging problem.

Finally, we will focus on the termination criteria for a training algorithm: when to stop and how to
stop. For proper operation of the training algorithms, a number of important considerations need
to be taken into accourt.

Most of these topics should not be analyzed in isolation. So, for example, a problem with improper data
ranges usually exhibits poor scaling, and thus can result in large roundoff errors and a poor condition
number. On the other hand, a somewhat "complete coverage" of the numerically oriented V&V aspects
of PTNNs requires to look at all these issues (from the different angles) such that no possible source of
problems remains undetected.

Appendix I contains basic defin tions about functions, quadratic forms, and matrices. Appendix J explains
quadratic functions. Appendix K describes eigenvectors and eigenvalues. Appendix L contains
derivatives of NN Activation furctions.

13.2. Notation
In the following, we assume a simple network structure: a feed-forward network with one hidden layer.

Such a neural network architecture is shown in Fi_,ure 13. The network consists of _input nodes, i.e.,

an input value is a vector rom _. The network has _hidden nodes which

are connected to all input no_t nodes. The output function of each hidden node

_is defined as: __is defined as:

(1)

i,
with weights and the activation function . The output of the neural network (at output node _) is

_of the output values of the nodes in the hidden layer t

writt_r combination
with that s

(2)

For purposes of compact notation, we combine all weights into a single matrix _, and don't distinguish

between the different layers. In more detail, _is defined as

June 12, 2002

VERIFICATION AND VALIDATION OF NEURAL NETWORKS FOR AEROSPACE APPLICATIONS Page 57

0.01 4

Figure 13: Simple feed-forward network with a hidden layer (Figure produced by the tool SNNS 21

As the activation function _w_, (usually) use the hyperbolic tangent

A graph of this activation function is shown in Figure 14. In general, a variety of different functions can be
used for Neural Networks. In order to allow the approximation of an arbitrary function (i.e., the network

can in principle learn any function), the activation function needs to be non-linear. For better mathematical

treatment, a smooth function with existing derivatives is preferred. In this re_erbolic

,- th res ect to _w_th an out ut range of _ _===_tangent, because it is symmetric, wi p ' ' ' P ' •

June 12, 2002

VERIFICATION AND VALIDA TION 0 _"NEURAL NETWORKS FOR A EROSPA CE A PPLICA TIONS Page 58

Figure 14: Non-linear activation function:

For the training, we assume that we have a set of training dat a which are pairs of input vectors

_and corresponding desired (target) outputs . When given as a set, e.g., _, we use

:, onfused with exponentials). Thus, we have

Train!_,_of the neural network is the task of adapting the weights and in such a way that the
error _, defined as

is minimized. For performing ths minimization (called supervised learning), a large number of different
algorithms exist (e.g., gradient descent or Levenberg Marqhardt).

For our discussion, we distinguish two phases:

1. Training Phase. During the training phase, the NN is presented with a training set _. With a

learning algorithm, we obtain the weight matrix _, such that the error _is minimized.

2. Deployment Phase. After training of a pre-trained Neural Network (PTNN), all weights are frozen.

This means, that during deployment, a fixed, read-only version of the weight matrix Bis used in
the system. Only in an on-line trained (or adaptive) NN architecture, a learning algorithm is
running during deployrrent which can change the weights.

June 12, 2002

VERIFICATION AND VALIDATION Of _NEURAL NETWORKS FOR AEROSPACE APPLICATIONS Page 59

In a system with a PTNN, the cesired network function is just obtained by evaluating the equations (1)
and (2).

13.3. Data Ranges
_ _, respectively. In practice,In general, inputs and outputs for a NN are defined over _".L,__, and

however, inputs and outputs have a specific meaning, and are thus restricted.
These restrictions need to be eqforced both for inputs and for outputs of the NN.

Example For a flight-control system, in_ural net include _, the Mach number which is

_XI___ . . -
naturally restricted to a range between __, the elevation (in feet), and the angle of attack .
The outputs of the NN comprise values, or derivatives.

Example Restrictions on the range of inputs and outputs and consistency of physical units need to be
considered and tested carefully, as is briefly discussed in the following examples.

• A restriction of elevation to _mmm_Bcan be dangerous in cases the aircraft needs to
operate in Death Valley or other areas below sea level.

• Certain input values can lead to singularities. For example, angles of _are typical candidates,
because any expressions containing tangents or cosines in the denominator lead to undefined
values.

• Consistency of units and scaled units (e.g., km, _m) needs to be checked throughout the entire
system. The classical example for a failure due to inconsistent units is the Mars Climate Orbiter 22.

Ranges of input and output values also are closely related to scaling (Section 12.5) and sensitivity
analysis (Section 12.6).

13.4. Roundoff Errors

The mathematical definition of the neural networks and the training algorithm assumes that all values are

real numbers, taken from _. In any practical implementation on a digital computer, however, these
numbers must be represented with a finite number of binary bits. Most digital computers represent their
numbers according to an IEEE standard. Because real numbers are represented as a pair, consisting of a
mantissa and an exponent, these representations are called floating-point numbers. There is a wealth of
literature (e.g., [23]), discussing these number representations.

Here, we will just focus some tooics which are important with respect to neural networks. Round-off errors
can be particularly large in expressions consisting of division and subtraction. Thus, in principle, each
point in the algorithm where these two operators occur need to be analyzed with respect to round-off
errors. Furthermore, round-off errors can propagate through an iterative algorithm. In the worst case, an
initially small error can increase during each iteration loop, leading to divergence and bad results.

Exa _ i twork is based upon the iterative minimization of the mean-square

error _. i _. Here, we just consider the simple case with one output node (i.e.,

_). If, the values of _are very large and the training of the network proceeds, the difference

June 12, 2002

VERIFICATION AND VALIDATION OF NEURAL NETWORKS FOR AEROSPACE APPLICATIONS Page 60

_can exhibit substantial round-off errors which lead to cancellation. In that case, an error of

would be the result (which would immediately terminate the learning algorithm).

So, for example for and _, the difference would still be _!on a computer

with double accuracy. For and , this difference already results in _._i

Example At each step of the i_erative training algorithm, a search direction _and a length _or this

step is calculated. Then, the algorithm moves its search from _to . For convergence, _ is

should always point towards the minimum, more specifically . Round-off errors,

however, can result in situations where _suddenly points into a different direction. If this situation is not

handled properly by the learning algorithm, the algorithm can start oscillating or diverging.

This problem can be extremely severe for neural networks with on-line learning.

13.4.1. Accuracy of Operators

Built-in (library) operators (like _) need to be checked for their accuracy over the entire

range of the floating-point numbers.

Example This problem actuall/happened to me recently when the author tried a floating-point library on
a small embedded system (Lego RCX brick with a JVM).

Functions can be approximated by an expansion into a Taylor series (usually around 0). So the

approximation _can be written as:

For the exponential we get: . If this function is evaluated for larger _, _(which

is usually calculated by multiplying _successively _imes) produces excessive large numbers which

result in very poor accuracy when divided by the (large) _. Figure 15 shows the approximation error
(squared error) between the approximated function and the Unix built-in exponential function (taken as
"ground truth" here).

June 12, 2002

VERIFICA TION AND VALIDATION OF NEURAL NETWORKS FOR AEROSPACE APPLICA TIONS Page 61

.-

Figure 15: Square error between two different approximations of the exponenttal function
(logarithmic scale)

13.5. Scaling

13.5.1. Badly Scaled Problems
A scaling problem can occur when the values of different elements of the input vector are magnitudes
apart. Then it is often the case, that the smaller values (although possible crucial for calculation of the
output) is not taken into accourt. This can lead to severe problems.

Example For the IFCS, some of the inputs have different orders of magnitude. For example, the

elevation is in "_, whereas the Mach number m_i_!Ttbe between 0and 5. A_ngle (i_ad) might

be even one or two orders of magnitude smaller (e.g., _]which is __rads).:_

Example Likewise for navigation problems, the combination of measured distances (e.g., DME or GPS)

and (possibl_small) angles, e.g., VOR, can lead to similar situations which require scaling to work
accordingly._

DCFS PTNN has output values in the range of

_. A naive training of a feed-forward network wtth the system's default
values (stop when SSE is smaller than 0.001) yielded "learning success" after only 100 iterations. A

closer look, however revealed that the "trained" neural negro. Due to the

small output values of _, the error of the "trained" NN turned out to be
smaller than the built-in threshold. Therefore, training stopped almost immediately with "success".

13.5.2. Influence of Scaling
Ideally, scaling should exhibit no influence on the system's behavior and the training. Rather it should
avoid the problems discussed above. However, there are a number of intricacies which will be described
in the following paragraphs.

June 12, 2002

VERIFICATION AND VALIDATION Or: NEURAL NETWORKS FOR AEROSPACE APPLICATIONS Page 62

13.5.2.1. Scaling and the Algorithm
When scaling is performed on inputs and outputs, it is implicitlyassumed that the algorithm in between (in
our case the NN and the training algorithms) is not affected by this (except for round-off errors). However,
this is not always the case, as !he following example demonstrates.

Example Let us consider two Kinds of learning algorithms: (a) gradient descent, and (b) a Newton

method Let us furthermore assume t_matrix _such that the scaled input is

and the scaled function is _. If we look at the direction of the search step
for each of the algorithms we can make the following observations.
(a)

The search direction _is always in the direction of the steepest descent, i.e.,

• A little calculation reveals that change of units in various directions can

affect the direction of the steepest descent. This effect shows up, if the scaling factors for different
directions are not the same.

(b)

The search direction for the Newton method always points to the lowest point of a quadratic
model. Thus, whenever the scaling transformation moves the location of the lowest point, the
direction will be adjusted automatically. Thus, the Newton method is stable with respect to
scaling.

13.5.2.2. Scaling and Training

Let us consider the following example (cf. [24]): we want to learn the linear identity function
For this simple task, we choose a small feed-forward network with one hidden layer with one

node. This hidden node has an _ activation function, the output node is linear. The entire transfer
function can be written down as

with weiahts . Let us now consider two sets of train__s taken from the

interval ,set 2 (l)is taken from the interval __.

Now, take a neu to train the neural network with and . As the desired

error we require _;_w"3mJl_l_r_in our given interval. Especially for the training set taken
from the large interval, convergence is extremely slow (if there is convergence at all). Despite the
simplicity of the setting, the NN's behavior is far from good.

The following analysis of the problem shows, why. First, let us have a look at how the weights
have to be set to obtain the desired low residual error. It is obvious that, in order to approximate the

June 12, 2002

VERIFICA TION AND VALIDATION OF NEURAL NETWORKS FOR AEROSPACE APPLICATIONS Page 63

function _with a derivative of 1 must be mapped to a region where the activation function _._i
also has a derivative close to 1. As is clear from Figure 14, this must be close to 0 (the derivative of

_ , _ vea small va ue "to bnn the argument of close
is 1 only at _d). Tl'.us, _!imust ha _ • g _. to

0), whereas the value of _m_Jst be large (of the orde !.

For our given training sets and the required error of _, we roughly obtain the following

values of the weights as shown in Table 1. The error or is shown in Figure] 6. Note,
that these values can be obtained analytically and are thus independent of the learning procedure (and its

convergence behavior).

Table 1 : Weight settings for learning the function _.

training set Range _,_ ,

Figure 16: Error between output and exact value (o-x)

It is obvious that we have a scaling problem here._ input value (which also could be quite

small even for l) with such a small weight like _milRIBJ_lis calling for troublel
A more detailed conditioning analysis (see Section 12,7) reveals even more details. The condition

number _is defined as the ratio of the absolute values of the largest and the smallest eigenvalue of the

problem, i.e.,

June 12, 2002

VERIFICATION AND VALIDATION 0 _ NEURAL NETWORKS FOR AEROSPACE APPLICA TIONS Page 64

In our case, the conditioni

with the quadratic error function . A little calculation [25] reveals, for

example, that

which results in , which is a relatively bad condition number. The corresponding

matrix for _looks much, much worse:

yielding hich is a clear indication of a very ill-conditioned system.

This example shows that seem ngly smooth and simple target functions can exhibit severe problems in
training.

13.5.3. How to Scale

Scaling can be accomplished in two different ways: scaling of the input and output values, or scaling of
the algorithm itself.

13.5.3.1. Scaling the Input and Output

Scaling of the input and output values are accomplished by mu_diagonal matrix _. The

algorithm itself is left unchanged. For example, if for a function _mmW_]_m_he range of the first input

is , and for the second, , then a matrix

which scales everything into a 0-1 interval would be defined as:

13.5.3.2. Scaling the Algorithm
Here, the appropriate steps inside the algorithm are adjusted appropriately.

June 12 2002

VERIFICATION AND VALIDATION OF NEURAL NETWORKS FOR AEROSPACE APPLICATIONS Page 65

Example For the gradient descent, we obtain the followincl modifications: the check for closeness to the

local minimum, usually Is replaced by , and the search direction

becomes:

13.5.3.3. Scaling and Biasing
Often scaling is combined with a linear transformation to remove a bias from the data. One common

method for this kind of scaling is to linearly transform the input vectors X_to have zero-mean and a
standard deviation of one. This is accomplished by:

13.6. Sensitivity Analysis

For a NN-based system it is important to know, how small changes in the input values _influence
the output. This influence is called sensitivity. In a safety-critical application, care must be taken that the
sensitivity of the system is limited, because high sensitivity can easily lead to unstable (or at least rough
and bumpy) behavior.

For a one-dimensional function , we can define sensitivity _as the ratio

L
When we have !_#'_|]_, the sensitivity is nothing but the derivative of the function t point _. This is

intuitively clear: whenever a function is very steep, small changes in x lead to drastic changes in y.
A measure of sensitivity can be similarly defined in the general case (_ inputs 0 and _outputs 0)-
Here, we consider how a change in each input affects each output. Thus, we end up with the following
matrix

This matrix is called the Jacobian at _. In general, a visualization of elements is difficult.
Thus, a sensitivity analysis can focus on different aspect:

Overall sensitivity: here we tak_, the maximal value of the elements in _, i.e.,

June 12, 2002

VERIFICA TION AND VALIDATION OF NEURAL NE_VORKS FOR AEROSPACE APPLICATIONS Page 66

• Sensitivity with respect to selected input-output pairs. Here, one or two inputs and one output are
selected and the resulting graph is plotted.

• Adaptive sensitivity analysis: in this approach, the entire functional envelope is covered with test

points _. At each point, the sensitivity is determined. Given a smoothness assumption on the
neural networks (i.e., tt'e learned function does not exhibit any abrupt changes), we can say that

within a certain area around _, the sensitivity does not change considerably. Thus, we can

guarantee that the NN's behavior is correct in this area (given that _ produces the right result). If

the sensitivity at _ is low, this area can be considerably large, thus reducing the number of
required test-data. For "urther details on this approach see [24, 26].

Example For illustration, let us consider a two-dimensional function in _ as shown in Figure 17. In
this function, two smooth areas with low gradients are separated by a somewhat sharp (but still
differentiable) transition. One can imagine that such a function!could show up on a transition from sub-
sonic into supersonic flight.

Figure 17: Graph of a two-dimensional function (exact representation).

We have used a simple feed-forward network (2 input node, 8 hidden node, 1 output node) to learn this
function from a set of equally-spaced training data (656 data points). For this training, a standard back-
propagation algorithm has been used.

In order to analyze the sensitivity of the output with respect to the inputs, we have to calculate the

Jacobian _. For a simple feed-forward network, this calculation is straight forward. The output function of

the NN is given by the vector ecuation:

June 12, 2002

VERIFICATION AND VALIDATION 0 = NEURAL NETWORKS FORAEROSPACE APPLICATIONS Page 67

where _is the number of hidden nodes, _the number of input nodes, and _the biases on the hidden

nodes. The elements of the Jacobian now can be calcula I _ e and using

the chain rule. The derivative cf the hyperbolic tangent is . We now

obtain:

Example When calculating the Jacobian of the network representation of our function from Figure 17, we

obtain the following raph as sqown in Figure 18. This mesh displays the sensitivity of the output with

respect to the input _ion our operational envelope. It is easy to see that the sensitivity is low in the
smooth areas of the envelope and, (as expected) high in the transition area. Therefore, a close analysis

of this region is strongly advised.

Figure 18: Graph of the Jacobian of the NN representation with respect to _;._%

13.7. Condition Numbers
For the analysis of the sensitivity of the neural network with respect to the training, it is often helpful to

look at the quadratic form of the error function (which is minimized during training). Please note, that for
the sensitivity analysis in the last section, we considered the influence of small perturbations in the input

on the output Here, we consider, how small changes in the weights affect the error function. Let _ be a

quadratic r_esentation (or approximation) of the error function _ in the neighborhood of the (local)

minimum, B. _ is defined as

June 12, 2002

VERIFICATION AND VALIDATION OF"NEURAL NETWORKS FOR AEROSPACE APPLICATIONS Page 68

where is the _ient , and _..is the Hessian matrix. It Is a positive definite _

matrix. In the vicinity of _, the behavior of _(and thus also of _)is determined by the eJgensystem

of _. This directly follows from the fact that at a stationary point (and a minimum is such one), the

i
gradient __must be zero. With

and setting this equation to zero, we obtain

In the vicinity o

and with Equation 7 this simplifies to

Using the definition of eigenvectors and eigenvalues of _, namely for eigenvalues and eigenvectors

we get

When we try to visualize this for two dimensions, we get an ellipsis around _as shown in Figure 19. The

large major axis is along the eigenvector _, the other axis along _". The length of the axes is

determined by the absolute value of the eigenvalues W.

June 12, 2002

VERIFICATION AND VALIDATION OF NEURAL NETWORKS FORAEROSPACE APPLICATIONS Page 69

Figure 19A

Figure 19B

Figure 19: Contours of a welt conditioned (A) and bad conditioned problem. The minimum is at
the center of the ellipses, the thick arrows mark the semi-axes of the ellipses,

With this observation, we now can figure out what the definition of the condition number

actually means. The condition r umber is defined as the ratio of the largest eigenvalue and the smallest

one, i.e.,

where __, _ re the eigenvalues in descending order. If all

eigenvalues are of similar magnitude, the condition number goes toward 1. In the 2-dimensional case,

June 12, 2002

VERIFICATION AND VALIDATION C F NEURAL NETWORKS FOR AEROSPACE APPLICATIONS Page 70

this means the contours of the function in vicinity of the minimum are circles (or very round ellipses). This
situation, as shown in Figure 19A, behaves very well. For any search algorithm, the search direction and
an appropriate step size can easily be found. Thus, good convergence can be expected.

If, however, the condition numoer is large, we can expect trouble• In that case, the contours are very
small, valley-like ellipses as shown in Figure19B• Because the steepness substantially changes in the
different directions, care must _3etaken not to choose a step-length which is too large. Whereas a long
step along the "valley" is in order (i.e., it decreases the function value), a step of the same length in the
orthogonal direction leads into the opposite "wall", resulting in oscillation or divergence of the algorithm.
Although the condition number gives a good indication of the expected numerical behavior of the
problem, the actual computational costs of calculating this number are considerable. There are two major
time-consuming steps involved: calculation of the Hessian, and the calculation of the eigenvalues. For a

Neural Network, the Hessian is of size where _ is the number of weights in the NN• Thus its
size can be quite substantial. [24] describes an elegant way to calculate the Hessian for a feed-forward
network, using a back-propagation style of algorithm.

Nevertheless, in practice, it might be advisable to look at approximations of the Hessian matrix• A straight-
forward approximation can be obtained, if the Hessian is not calculated directly, but rather in the form

where _is a triangular matrix, and _is a diagonal one. Because the Hessian is positive definite, this

W
factorization always exist. Then, we can take the elements of the diagonal matrix in the same way as
described above to obtain an approximation of the condition number:

This approximation is a lower bound of the condition number. Using the _l'orm of the Hessian can
have substantial advantages in training algorithms which use second derivatives (for details see [27]).
According to [26], there are cases where some small additional computational overhead should be used
to obtain better approximations of the condition number• One of these methods is described in the
following• Let us define the vectors

and

where _is the index of the maximal diagonal element and :_that of the minimal.

• It can be shown that

and

June 12, 2002

VERIFICATION AND VALIDATION OF NEURAL NETWORKS FOR AEROSPACE APPLICATIONS Page 71

and consequently

r bound cm the condition number. If we normalize these vectors, i.e.,

, it can be.shown that and similarly . For details and an
example see [26].

13.8. Analysis of the Training Algorithm
In this section, we will discuss issues on how (and how fast) a training algorithm will proceed from a given
starting point to a minimum, and how we can stop the training algorithm when it came "sufficiently close",
that is, if it does.

In general, NN training algorithms are iterative numerical optimization algorithms which try to find a
(global) minimum. The function which needs to be minimized is the error function. NN training algorithms

usually have the following iterative structure. From a starting value the algorithm proceeds
using the following steps:

1. Determination of search direction o go from _,

2. Determination of the length of a search step, _,

3. Go toward that directior_, i.e., _.

4. If we are done, then st 3p, else goto 1

So far, the training algorithm looks pretty straight-forward. However, there are a number of problems that
can lead the search astray or grind it to a halt (see the following subsection). Always remember, that for
multivariate functions (i.e., a furction with more than one input), all these algorithms only converge (if they
do) to a local minimum. There i.'; no guarantee that they will reach a global minimum.

lAs will be seen in the following, the determination of search direction and step length _has a crucial

effect on the algorithm's behavior and performance. Therefore, a large number of different algorithms and
variants have been developed over time. They differ not only how both values are calculated, but also in
what kind of information is available about the error function _(e.g., availability of 2nd derivative). In the

following subsection, we will discuss issues concerning the progress of the training algorithm.

June 12, 2002

VERIFICATION AND VALIDATION OF NEURAL NETWORKS FOR AEROSPACE APPLICA"/-IONS Page 72

The training algorithm stops in Step 4 when _is "sufficiently close" to the desired minimum. In Section
12.8.2, we will focus on details on the stopping criteria.

13.8.1. Progress of the Training
Despite the large variety of different training algorithms and their variants, it is far from trivial to select an
algorithm which performs optimally (or even well) for a given problem. The following example will illustrate
this.

Example Let us consider thei! _ " 2

This function is known as Rosenbrock's banana function. This function (shown in Figure 20) has a unique

minimum at point . Figure 21 shows a logarithmic contour plot of this function. In this

plot, lines connect points of equal function values - similar to elevation lines on a hiking map.

Figure 20: 3D-plot for Rosenbrock's banana:

',,'"_'- '.. ' .-" I tI,.)Ihl "

\ '.,.\"-::._-%//,, ll
.L$.I -0.$ o G$ I l.J

E
Figure 21 : Contour-plot for Rosenbrock's function (logarithmic z-axis). The starting point nd

the global minimum _ are marked.

June 12, 2002

VERIFICATION AND VALIDATION C _ NEURAL NETWORKS FOR AEROSPACE APPLICATIONS Page 73

We now use different algorithms to find the (global) minimum of this function. For all algorithms, the

starting-point is . Then, the individual training steps are overlaid the contour plot.

This experiment is described in detail in [26].

Figure 22 shows the behavior of three different search algorithms. The left figure depicts a good, albeit
not optimal behavior. After starting, the algorithm moves along the "valley" to reach the global minimum
after a small number of steps.]-he graph in the middle shows, how an algorithm can get stuck. After a
number of reasonable steps, the step-length becomes smaller and smaller. Thus the search process gets
slower until it grinds to a halt, far away from the minimum. Finally, in the picture on the right hand side, the
algorithm suddenly diverges. It produces iterations with large step-sizes, but the search direction does not
go toward the minimum. In tha_ case, an arbitrary result can occur. It is surprising, how the performance
for such a smooth, relatively simple (but nonlinear) two-dimensional varies. In general, situations where
the function which has to be m nimized exhibits narrow "valleys" can be a source of convergence

problems.

In our NN training case, where we usually have a quadratic error function which needs to be minimized,
these valleys are of elliptic shape (cf. Figure 19). There, narrow valleys correspond to an ill-conditioned

problem The ellipsis around the minimum _is characterized by the minor and major semi-axes. Their
ratio defines the shape of the ellipsis; therefore, a narrow one has a large major and short minor semi-
axis. On the other hand, these semi-axes directly correspond to the eigenvectors/values of the Hessian.
Thus, a narrow ellipsis corresponds to a large ratio between the eigenvalues, and thus a badly
conditioned system (see Section 12.7 for details).

Figure 22A

June 12, 2002

VERIFICATION AND VALIDATION 07- NEURAL NETWORKS FOR A EROSPA CE APPLICA"I IONS Page 74

_ "_ _' \ "_ ' ,' t If," e_i j1 I._

'_ \ _,\ \ \, _'" "" -/ /.// /i:/ / l

:' " .'A "--- -.,.',/r-5"//t / s i

It "., \",,."--'].,/i /1/ \ ,:, ,, "-'-T_," t,', t .<_,
.I._ .I .G_ CI Ot_ I I._

Figure 22B

0

Figure 22-C

Figure 22: Behavior of different search algorithms on Rosenbrock's function.

13.8.2. Stopping (the Training)
"Begin at the beginning" the king said gravely, "and go on tiffyou come to the end; then stop." Lewis
Carro/- Alice in Wonderland

In this section, we discuss, "what it means when we stop":

• Have we solved the problem?

June 12, 2002

VERIFICATION AND VALIDATION 0 _ NEURAL NETWORKS FOR AEROSPACE APPLICATIONS Page 75

• Have we ground to a I-air? (i.e., no more progress)

• Have we exhausted resources (time, memory, patience (yes!))?

• Have we solved the right problem?

Note: In this section, we will not discuss the issues of stopping the training with respect to number of data
vectors in the training set (and issues like over-training).

Stopping, of course, only applies to the iterative training algorithm. An iterative training algorithm starts

from a point _,_,_.Then, it iterafively tries to reach a ,(_lobal) minimum _. A necessary condition for a

minimum is that the gradient there is 0, i.e., _. However, due to finite-precision machine

arithmetic, we only can obtain . Furthermore, it needs to be checked, that the point _is

not a saddle point. Here, we can benefit from the theorem that for a minimum _, the Hessian is positive
definfe (see Section 12.4). For a one-dimensional function, this boils down to the well-known: the second
derivative at this point must be larger than zero. However, in general, calculation of the Hessian is
expensive. In the following, we discuss several, well-known stopping criteria with respect to their
efficiency and effect on scaling It must be said that there is no "one-size-fits-all" stopping criterion.

13.8.2.1. Absolute Stopping Criteria
The straight-forward stopping criterion

usually does not work well, since it is not stable with respect to scaling (see also Example 12.5.3). In

order to overcome the scaling I:_roblem for _(but not for _), the following condition can be used [28]

13.8.2.2. Relative Gradient Stopping Criterion
Another possibility to overcome effects of scaling is to use a re/ative measure of the gradient, defined as

|the ratio of the relative rate of change in over the relative rate of change in !_. Thus, we obtain for the

individual components of this relative gradient _:

Then, the stopping criterion is

This stopping criterion is not affected by scaling. However, when the minimum, or the function value close
to the minimum approaches 0, round-off errors can occur.

June 12, 2002

VERIFICATION AND VALIDATION 0_-- NEURAL NETWORKS FOR AEROSPACE APPLICATIONS Page 76

13.8.2.3. Test for Convergence or Stalling
Instead of testing whether we are close to a minimum (i.e., see if the gradient gets sufficiently small), we
can monitor the progress of the algorithm. Because most optimization algorithms (but not standard
backprop) reduce the length of each step inthe vicinity of a minimum, we can stop, whenever the relative

change of the _,value between iterations gets sufficiently small. This means,

where _{_is the x-value at the ll_-th iteration. Norm is just a normalizing operator to overcome scaling
problems.
As a rule of thumb, the value of _can be set as follows: if the calculation requires _valid decimal digits,

the tolerance should roughly be set to _..=.,., _;-_,_.

This stopping criterion does terminate the algorithm not only when a minimum is reached. Also in
situations, where the algorithm gets "stuck" (e.g., in shallow places), this stopping criterion fires. It is

i' checked with respect totherefore important that, after tt'.e algorithm stops, the current values of _ are
the minimum (e.g., by using one of the above criteria).

13.8.2.4. Stopping after N iterations
In most practical applications, it is meaningful to set an upper limit on the number of iterations. This limit
circumvents the problem that the algorithm can run for an arbitrary amount of time. For a system with
timing constraints (e.g., for on-line training), such a limit is an absolute must.

However, two things need to be taken into account:

• If the algorithm stops after _iterations, it needs to be checked to determine if the algorithm
actually reached a minimum, or if it got stuck.

• If the actual run-time is to be limited by this means, care has to be taken that the run-time for
each iteration is exactly the same. If numerical subroutines (e.g., matrix inverse), iterative

subroutines (e.g., __), or sparse matrices are used, this condition might be violated.

Example Usually, the runtime of a numerical library function (e.g.,) is considered to be
small and constant. However, due to the built-in algorithms, function evaluation for different parameter
values can take different amounts of time. These effects, as shown in Figure 23 can be substantially large

(here, approximately _). In particular in time-critical applications, these effects have to be analyzed

(and tested) carefully.

June 12, 2002

VERIFICATION AND VALIDATION C c NEURAL NETWORKS FOR AEROSPACE APPLICATIONS Page 77

Figure 23: Run-time of library sin-function over a wide range of input values (log-scale). Run-time
in seconds for 50'000 evaluations (on a Linux notebook).

June 12, 2002

VERIFICATION AND VALIDA TION 0-- NEURAL NETWORKS FOR AEROSPACE APPLICA TIONS Page 78

14. APPENDIX I: BASICS

In the following, we assume that His a function from _iinto _. Extreme values, like minimums and
maximums can be defined as follows:

June 12, 2002

VERIFICATION AND VALIDATION OF NEURAL NETWORKS FOR AEROSPACE APPLICATIONS Page 79

June 12, 2002

VERIFICATION AND VALIDATION OF NEURAL NETWORKS FOR AEROSPACE APPLICATIONS Page 80

15. APPENDIX J: QUADRATIC FUNCTIONS AND
QUADRATIC FORMS

An arbitrary non-linear function can be expressed as a Taylor series. Because in our context, we only
consider relatively smooth functions, it is sufficient to consider only the first few terms. In particular, the

approximation to quadratic functions i__

be such a quadratic function with , and the Hessian _ ,_.Then __.- .

Let us now consider the behavior of _around some point _, namely or _, and

_. Then

For a stationarypoint _(which is ap_-requisite for a minimum) we need to have: _.
On

the other hand, __(by differentiation of the definition of _. Thus we have

which is a system of linear equations.

Therefore, non-linear optimization problems can be handled, in the vicinity of a stationary point as a set of
linear equations.

June 12, 2002

VERIFICA TION AND VALIDATION 0-'- NEURAL NETWORKS FOR AEROSPACE APPLICA"i IONS Page 81

June 12, 2002

VERIFICATION AND VALIDA TION 0 _ NEURAL NETWORKS FOR AEROSPACE APPLICATIONS Page 82

16. APPENDIX K: EIGENVECTORS AND
EIGENVALUES

mFor a matrix _, a set of vectors is called eigenvectors of _ and are called

eigenvalues if for all

ond to the solutions of the characteristic equation for the matrix _-_,

Corollary:/or a positive definite matrix

June 12, 2002

VERIFICA TION AND VALIDATION O_ NEURAL NETWORKS FOR AEROSPACE APPLICA TIONS Page 83

June 12, 2002

v

VERIFICATION AND VALIDATION OF NEURAL NETWORKS FOR AEROSPACE APPLICATIONS
Page 84

17. REFERENCES

1Jo'se Principe, Neil Euliano and W., Curt Lefeebvre, Neural and Adaptive Systems, Fundamentals
through Simulations, John Wile¢, 2000.

2 Russell D. Reed and Robert J. Marks, II, Neural Smithing, Massachusetts Institute of Technology, 1999.

p. 2

3 Definition for the Verification And Validation of Neural Networks For Aerospace Applications, February

19, 2002, Dale MacKall, Dryder Space Flight Center

4 Reed and Marks, Neural Smithing, P. 7

s S. Y. Kung, Digital Neural Networks, PTR Prentice Hall 1993. p. 30

6 Interview with Chuck Jorgensen, March, 2002

7 S. Y. Kung, Digital Neural Networks, p. 27

BDigital Neural Networks S. Y. Kung PTR Prentice Hall 1993. pp 85-86
9 NASA Procedures and Guidelines NPG: 2820.DRAFT, NASA Software Guidelines and Requirements
as of 3/19/01 (Responsible Office: Code AE/Office of the Chief Engineer), NASA Ames Research
Center, Moffett Field, California. USA

10IEEE Standards 12207.0, 12207.1, 12207.2 located at the following web address (URL):
http://icccxplore.ieee.orq/search97/s97is.vts?Action=FilterSearch &Search Paqe=VSearch 'htm&ResultTe
mplate=adv crst.hts&Filter=adv sch.hts&ViewTemplate=lpdocview.hts&queryl =12207&scope1 =&opl=a
nd&query2=&sc_pe2=&_p2=and&query3=&sc_pe3=&c___ecti_n=__ur&c___ecti_n=c_nf&c___ecti_n=stds&cu
Ilection=pprint&pyl =&py2=&SortField=pyr&SortOrder=desc&ResultCount= 15

11Reed and Marks, Neural Sm#hing p. 170-172

12Reed and Marks, Neural Smithing p. 1

13Reed and Marks, Neural and Adaptive Systems p. 570

14Reed and Marks, Neural Sm#hing, p 317

15Jose Principe, et al, Neural and Adaptive Systems, Fundamentals through Simulations

78Reed and Marks, Neural Sm#hing p.71-72

17Microsoft Corporation. "Windows 2000 Server Resource Kit Online Books", MSDN Library Glossary.
1985-2000.

1BWhatis?com http://whatis.tecl_tar.qet.com/definition/0,,sid9 qci284015,00.html

19Reed and Marks,Neural Smitning, p. 127

20John Kaneshige and Karen Gundy-Burlet, Integrated Neural Flight and Propulsion Control System
American Institute of Aeronautics and Astronautics, AIAA-2001-4386

21Snns: Stuttgart neural network simulator. URL: http://www-ra.informatik.uni-tuebingen.de/SNNS/, 2002.

June 12, 2002

VERIFICATION AND VALIDATION OF NEURAL NETWORKS FOR AEROSPACE APPLICATIONS Page 85

22M. C. O. M. I. B. S. Report). Report on project management in nasa by the mars climate orbiter mishap
investigation board. URL: http:_/www.nasa.gov/newsinfo/marsreports.html, 2000.

23 W. H. Press, B. P. Flannery. S. A. Teukolsky, and W. T. Vetterling. Numerical Recipes in C.
Cambridge Univ. Press, Camb,idge, UK, 2nd. edition, 1992.

24D. Soloway. Improved convergence for output scaling of a feedforward network with linear output
nodes. In 1993 IEEE International Conference On Neural Networks. IEEE Computer Society Press, 1993.

2s C. M. Bishop. Neural Networks for Pattern Recognition. Clarendon-Press, Oxford, 1995.

26j. Schumann. Vericonn: Verification of controllers based on adaptive neural networks -- white paper--.
Technical report, NASA Ames, Automated Software Engineering, 2001.

27p. Gill, W. Murray, and M. W-ight. Practical Optimization. Academic Press, 1981.

28j. E. Dennis and R. B. Schnabel. Numerical Methods for Unconstrained Optimization and Nonlinear

Equations, volume 16 of Classics in Applied Mathematics. SIAM, 1996.

June 12, 2002

